×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 12.3: Elementary Statistics 12th Edition

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Full solutions for Elementary Statistics | 12th Edition

ISBN: 9780321836960

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Solutions for Chapter 12.3

Solutions for Chapter 12.3
4 5 0 254 Reviews
21
2
Textbook: Elementary Statistics
Edition: 12
Author: Mario F. Triola
ISBN: 9780321836960

Elementary Statistics was written by and is associated to the ISBN: 9780321836960. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 12.3 includes 48 full step-by-step solutions. This textbook survival guide was created for the textbook: Elementary Statistics, edition: 12. Since 48 problems in chapter 12.3 have been answered, more than 215523 students have viewed full step-by-step solutions from this chapter.

Key Statistics Terms and definitions covered in this textbook
  • Average run length, or ARL

    The average number of samples taken in a process monitoring or inspection scheme until the scheme signals that the process is operating at a level different from the level in which it began.

  • Biased estimator

    Unbiased estimator.

  • Categorical data

    Data consisting of counts or observations that can be classiied into categories. The categories may be descriptive.

  • Coeficient of determination

    See R 2 .

  • Contour plot

    A two-dimensional graphic used for a bivariate probability density function that displays curves for which the probability density function is constant.

  • Contrast

    A linear function of treatment means with coeficients that total zero. A contrast is a summary of treatment means that is of interest in an experiment.

  • Convolution

    A method to derive the probability density function of the sum of two independent random variables from an integral (or sum) of probability density (or mass) functions.

  • Correlation matrix

    A square matrix that contains the correlations among a set of random variables, say, XX X 1 2 k , ,…, . The main diagonal elements of the matrix are unity and the off-diagonal elements rij are the correlations between Xi and Xj .

  • Covariance

    A measure of association between two random variables obtained as the expected value of the product of the two random variables around their means; that is, Cov(X Y, ) [( )( )] =? ? E X Y ? ? X Y .

  • Deming

    W. Edwards Deming (1900–1993) was a leader in the use of statistical quality control.

  • Deming’s 14 points.

    A management philosophy promoted by W. Edwards Deming that emphasizes the importance of change and quality

  • Density function

    Another name for a probability density function

  • Dispersion

    The amount of variability exhibited by data

  • Distribution function

    Another name for a cumulative distribution function.

  • Eficiency

    A concept in parameter estimation that uses the variances of different estimators; essentially, an estimator is more eficient than another estimator if it has smaller variance. When estimators are biased, the concept requires modiication.

  • Empirical model

    A model to relate a response to one or more regressors or factors that is developed from data obtained from the system.

  • Error variance

    The variance of an error term or component in a model.

  • Finite population correction factor

    A term in the formula for the variance of a hypergeometric random variable.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fixed factor (or fixed effect).

    In analysis of variance, a factor or effect is considered ixed if all the levels of interest for that factor are included in the experiment. Conclusions are then valid about this set of levels only, although when the factor is quantitative, it is customary to it a model to the data for interpolating between these levels.