×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 8.1: Joint Distributions of Two Random Variables

Fundamentals of Probability, with Stochastic Processes | 3rd Edition | ISBN: 9780131453401 | Authors: Saeed Ghahramani

Full solutions for Fundamentals of Probability, with Stochastic Processes | 3rd Edition

ISBN: 9780131453401

Fundamentals of Probability, with Stochastic Processes | 3rd Edition | ISBN: 9780131453401 | Authors: Saeed Ghahramani

Solutions for Chapter 8.1: Joint Distributions of Two Random Variables

Solutions for Chapter 8.1
4 5 0 422 Reviews
11
5
Textbook: Fundamentals of Probability, with Stochastic Processes
Edition: 3
Author: Saeed Ghahramani
ISBN: 9780131453401

Chapter 8.1: Joint Distributions of Two Random Variables includes 29 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Fundamentals of Probability, with Stochastic Processes was written by and is associated to the ISBN: 9780131453401. This textbook survival guide was created for the textbook: Fundamentals of Probability, with Stochastic Processes, edition: 3. Since 29 problems in chapter 8.1: Joint Distributions of Two Random Variables have been answered, more than 14135 students have viewed full step-by-step solutions from this chapter.

Key Statistics Terms and definitions covered in this textbook
  • a-error (or a-risk)

    In hypothesis testing, an error incurred by failing to reject a null hypothesis when it is actually false (also called a type II error).

  • Analysis of variance (ANOVA)

    A method of decomposing the total variability in a set of observations, as measured by the sum of the squares of these observations from their average, into component sums of squares that are associated with speciic deined sources of variation

  • Assignable cause

    The portion of the variability in a set of observations that can be traced to speciic causes, such as operators, materials, or equipment. Also called a special cause.

  • Center line

    A horizontal line on a control chart at the value that estimates the mean of the statistic plotted on the chart. See Control chart.

  • Confounding

    When a factorial experiment is run in blocks and the blocks are too small to contain a complete replicate of the experiment, one can run a fraction of the replicate in each block, but this results in losing information on some effects. These effects are linked with or confounded with the blocks. In general, when two factors are varied such that their individual effects cannot be determined separately, their effects are said to be confounded.

  • Contingency table.

    A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

  • Covariance

    A measure of association between two random variables obtained as the expected value of the product of the two random variables around their means; that is, Cov(X Y, ) [( )( )] =? ? E X Y ? ? X Y .

  • Covariance matrix

    A square matrix that contains the variances and covariances among a set of random variables, say, X1 , X X 2 k , , … . The main diagonal elements of the matrix are the variances of the random variables and the off-diagonal elements are the covariances between Xi and Xj . Also called the variance-covariance matrix. When the random variables are standardized to have unit variances, the covariance matrix becomes the correlation matrix.

  • Critical region

    In hypothesis testing, this is the portion of the sample space of a test statistic that will lead to rejection of the null hypothesis.

  • Critical value(s)

    The value of a statistic corresponding to a stated signiicance level as determined from the sampling distribution. For example, if PZ z PZ ( )( .) . ? =? = 0 025 . 1 96 0 025, then z0 025 . = 1 9. 6 is the critical value of z at the 0.025 level of signiicance. Crossed factors. Another name for factors that are arranged in a factorial experiment.

  • Deming’s 14 points.

    A management philosophy promoted by W. Edwards Deming that emphasizes the importance of change and quality

  • Distribution free method(s)

    Any method of inference (hypothesis testing or conidence interval construction) that does not depend on the form of the underlying distribution of the observations. Sometimes called nonparametric method(s).

  • Distribution function

    Another name for a cumulative distribution function.

  • Error mean square

    The error sum of squares divided by its number of degrees of freedom.

  • Error propagation

    An analysis of how the variance of the random variable that represents that output of a system depends on the variances of the inputs. A formula exists when the output is a linear function of the inputs and the formula is simpliied if the inputs are assumed to be independent.

  • Event

    A subset of a sample space.

  • False alarm

    A signal from a control chart when no assignable causes are present

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

  • Generating function

    A function that is used to determine properties of the probability distribution of a random variable. See Moment-generating function

  • Harmonic mean

    The harmonic mean of a set of data values is the reciprocal of the arithmetic mean of the reciprocals of the data values; that is, h n x i n i = ? ? ? ? ? = ? ? 1 1 1 1 g .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password