×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Statistics / Introduction to Probability and Statistics for Engineers and Scientists 5

Introduction to Probability and Statistics for Engineers and Scientists 5th Edition - Solutions by Chapter

Introduction to Probability and Statistics for Engineers and Scientists | 5th Edition | ISBN: 9780123948113 | Authors: Sheldon M. Ross

Full solutions for Introduction to Probability and Statistics for Engineers and Scientists | 5th Edition

ISBN: 9780123948113

Introduction to Probability and Statistics for Engineers and Scientists | 5th Edition | ISBN: 9780123948113 | Authors: Sheldon M. Ross

Introduction to Probability and Statistics for Engineers and Scientists | 5th Edition - Solutions by Chapter

The full step-by-step solution to problem in Introduction to Probability and Statistics for Engineers and Scientists were answered by , our top Statistics solution expert on 01/09/18, 07:40PM. Introduction to Probability and Statistics for Engineers and Scientists was written by and is associated to the ISBN: 9780123948113. Since problems from 15 chapters in Introduction to Probability and Statistics for Engineers and Scientists have been answered, more than 35570 students have viewed full step-by-step answer. This expansive textbook survival guide covers the following chapters: 15. This textbook survival guide was created for the textbook: Introduction to Probability and Statistics for Engineers and Scientists, edition: 5.

Key Statistics Terms and definitions covered in this textbook
  • Adjusted R 2

    A variation of the R 2 statistic that compensates for the number of parameters in a regression model. Essentially, the adjustment is a penalty for increasing the number of parameters in the model. Alias. In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Average run length, or ARL

    The average number of samples taken in a process monitoring or inspection scheme until the scheme signals that the process is operating at a level different from the level in which it began.

  • Bayes’ theorem

    An equation for a conditional probability such as PA B ( | ) in terms of the reverse conditional probability PB A ( | ).

  • Bivariate normal distribution

    The joint distribution of two normal random variables

  • Conditional probability density function

    The probability density function of the conditional probability distribution of a continuous random variable.

  • Conditional probability distribution

    The distribution of a random variable given that the random experiment produces an outcome in an event. The given event might specify values for one or more other random variables

  • Contingency table.

    A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

  • Cook’s distance

    In regression, Cook’s distance is a measure of the inluence of each individual observation on the estimates of the regression model parameters. It expresses the distance that the vector of model parameter estimates with the ith observation removed lies from the vector of model parameter estimates based on all observations. Large values of Cook’s distance indicate that the observation is inluential.

  • Correlation matrix

    A square matrix that contains the correlations among a set of random variables, say, XX X 1 2 k , ,…, . The main diagonal elements of the matrix are unity and the off-diagonal elements rij are the correlations between Xi and Xj .

  • Defects-per-unit control chart

    See U chart

  • Error sum of squares

    In analysis of variance, this is the portion of total variability that is due to the random component in the data. It is usually based on replication of observations at certain treatment combinations in the experiment. It is sometimes called the residual sum of squares, although this is really a better term to use only when the sum of squares is based on the remnants of a model-itting process and not on replication.

  • Error variance

    The variance of an error term or component in a model.

  • Exponential random variable

    A series of tests in which changes are made to the system under study

  • False alarm

    A signal from a control chart when no assignable causes are present

  • Fisher’s least signiicant difference (LSD) method

    A series of pair-wise hypothesis tests of treatment means in an experiment to determine which means differ.

  • Gamma random variable

    A random variable that generalizes an Erlang random variable to noninteger values of the parameter r

  • Gaussian distribution

    Another name for the normal distribution, based on the strong connection of Karl F. Gauss to the normal distribution; often used in physics and electrical engineering applications

  • Geometric mean.

    The geometric mean of a set of n positive data values is the nth root of the product of the data values; that is, g x i n i n = ( ) = / w 1 1 .

  • Goodness of fit

    In general, the agreement of a set of observed values and a set of theoretical values that depend on some hypothesis. The term is often used in itting a theoretical distribution to a set of observations.

  • Hat matrix.

    In multiple regression, the matrix H XXX X = ( ) ? ? -1 . This a projection matrix that maps the vector of observed response values into a vector of itted values by yˆ = = X X X X y Hy ( ) ? ? ?1 .