×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 8.7: Sampling Distributions of Estimators

Probability and Statistics | 4th Edition | ISBN: 9780321500465 | Authors: Morris H. DeGroot, Mark J. Schervish

Full solutions for Probability and Statistics | 4th Edition

ISBN: 9780321500465

Probability and Statistics | 4th Edition | ISBN: 9780321500465 | Authors: Morris H. DeGroot, Mark J. Schervish

Solutions for Chapter 8.7: Sampling Distributions of Estimators

Chapter 8.7: Sampling Distributions of Estimators includes 16 full step-by-step solutions. This textbook survival guide was created for the textbook: Probability and Statistics, edition: 4. This expansive textbook survival guide covers the following chapters and their solutions. Since 16 problems in chapter 8.7: Sampling Distributions of Estimators have been answered, more than 15069 students have viewed full step-by-step solutions from this chapter. Probability and Statistics was written by and is associated to the ISBN: 9780321500465.

Key Statistics Terms and definitions covered in this textbook
  • Adjusted R 2

    A variation of the R 2 statistic that compensates for the number of parameters in a regression model. Essentially, the adjustment is a penalty for increasing the number of parameters in the model. Alias. In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Arithmetic mean

    The arithmetic mean of a set of numbers x1 , x2 ,…, xn is their sum divided by the number of observations, or ( / )1 1 n xi t n ? = . The arithmetic mean is usually denoted by x , and is often called the average

  • Bernoulli trials

    Sequences of independent trials with only two outcomes, generally called “success” and “failure,” in which the probability of success remains constant.

  • Bimodal distribution.

    A distribution with two modes

  • Causal variable

    When y fx = ( ) and y is considered to be caused by x, x is sometimes called a causal variable

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Continuity correction.

    A correction factor used to improve the approximation to binomial probabilities from a normal distribution.

  • Covariance

    A measure of association between two random variables obtained as the expected value of the product of the two random variables around their means; that is, Cov(X Y, ) [( )( )] =? ? E X Y ? ? X Y .

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Designed experiment

    An experiment in which the tests are planned in advance and the plans usually incorporate statistical models. See Experiment

  • Discrete random variable

    A random variable with a inite (or countably ininite) range.

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • Exhaustive

    A property of a collection of events that indicates that their union equals the sample space.

  • F distribution.

    The distribution of the random variable deined as the ratio of two independent chi-square random variables, each divided by its number of degrees of freedom.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Frequency distribution

    An arrangement of the frequencies of observations in a sample or population according to the values that the observations take on

  • Gamma function

    A function used in the probability density function of a gamma random variable that can be considered to extend factorials

  • Hat matrix.

    In multiple regression, the matrix H XXX X = ( ) ? ? -1 . This a projection matrix that maps the vector of observed response values into a vector of itted values by yˆ = = X X X X y Hy ( ) ? ? ?1 .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password