×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 5-2: Mean, Variance, Standard Deviation, and Expectation

Elementary Statistics: A Step by Step Approach 8th ed. | 8th Edition | ISBN: 9780073386102 | Authors: Allan G Bluman Professor Emeritus

Full solutions for Elementary Statistics: A Step by Step Approach 8th ed. | 8th Edition

ISBN: 9780073386102

Elementary Statistics: A Step by Step Approach 8th ed. | 8th Edition | ISBN: 9780073386102 | Authors: Allan G Bluman Professor Emeritus

Solutions for Chapter 5-2: Mean, Variance, Standard Deviation, and Expectation

Solutions for Chapter 5-2
4 5 0 421 Reviews
30
5
Textbook: Elementary Statistics: A Step by Step Approach 8th ed.
Edition: 8
Author: Allan G Bluman Professor Emeritus
ISBN: 9780073386102

Since 26 problems in chapter 5-2: Mean, Variance, Standard Deviation, and Expectation have been answered, more than 37478 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Elementary Statistics: A Step by Step Approach 8th ed. was written by and is associated to the ISBN: 9780073386102. This textbook survival guide was created for the textbook: Elementary Statistics: A Step by Step Approach 8th ed., edition: 8. Chapter 5-2: Mean, Variance, Standard Deviation, and Expectation includes 26 full step-by-step solutions.

Key Statistics Terms and definitions covered in this textbook
  • a-error (or a-risk)

    In hypothesis testing, an error incurred by failing to reject a null hypothesis when it is actually false (also called a type II error).

  • Alternative hypothesis

    In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

  • Backward elimination

    A method of variable selection in regression that begins with all of the candidate regressor variables in the model and eliminates the insigniicant regressors one at a time until only signiicant regressors remain

  • Bivariate distribution

    The joint probability distribution of two random variables.

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Central tendency

    The tendency of data to cluster around some value. Central tendency is usually expressed by a measure of location such as the mean, median, or mode.

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Coeficient of determination

    See R 2 .

  • Completely randomized design (or experiment)

    A type of experimental design in which the treatments or design factors are assigned to the experimental units in a random manner. In designed experiments, a completely randomized design results from running all of the treatment combinations in random order.

  • Crossed factors

    Another name for factors that are arranged in a factorial experiment.

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Discrete uniform random variable

    A discrete random variable with a inite range and constant probability mass function.

  • Distribution function

    Another name for a cumulative distribution function.

  • Expected value

    The expected value of a random variable X is its long-term average or mean value. In the continuous case, the expected value of X is E X xf x dx ( ) = ?? ( ) ? ? where f ( ) x is the density function of the random variable X.

  • Exponential random variable

    A series of tests in which changes are made to the system under study

  • Finite population correction factor

    A term in the formula for the variance of a hypergeometric random variable.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

  • Generating function

    A function that is used to determine properties of the probability distribution of a random variable. See Moment-generating function

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password