×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 12.5: Testing the Usefulness of the Linear Regression Model

Introduction to Probability and Statistics 1 | 14th Edition | ISBN: 9781133103752 | Authors: William Mendenhall Robert J. Beaver, Barbara M. Beaver

Full solutions for Introduction to Probability and Statistics 1 | 14th Edition

ISBN: 9781133103752

Introduction to Probability and Statistics 1 | 14th Edition | ISBN: 9781133103752 | Authors: William Mendenhall Robert J. Beaver, Barbara M. Beaver

Solutions for Chapter 12.5: Testing the Usefulness of the Linear Regression Model

Chapter 12.5: Testing the Usefulness of the Linear Regression Model includes 12 full step-by-step solutions. This textbook survival guide was created for the textbook: Introduction to Probability and Statistics 1, edition: 14. Since 12 problems in chapter 12.5: Testing the Usefulness of the Linear Regression Model have been answered, more than 9664 students have viewed full step-by-step solutions from this chapter. Introduction to Probability and Statistics 1 was written by and is associated to the ISBN: 9781133103752. This expansive textbook survival guide covers the following chapters and their solutions.

Key Statistics Terms and definitions covered in this textbook
  • 2 k p - factorial experiment

    A fractional factorial experiment with k factors tested in a 2 ? p fraction with all factors tested at only two levels (settings) each

  • a-error (or a-risk)

    In hypothesis testing, an error incurred by failing to reject a null hypothesis when it is actually false (also called a type II error).

  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • Analysis of variance (ANOVA)

    A method of decomposing the total variability in a set of observations, as measured by the sum of the squares of these observations from their average, into component sums of squares that are associated with speciic deined sources of variation

  • Box plot (or box and whisker plot)

    A graphical display of data in which the box contains the middle 50% of the data (the interquartile range) with the median dividing it, and the whiskers extend to the smallest and largest values (or some deined lower and upper limits).

  • Causal variable

    When y fx = ( ) and y is considered to be caused by x, x is sometimes called a causal variable

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Center line

    A horizontal line on a control chart at the value that estimates the mean of the statistic plotted on the chart. See Control chart.

  • Chi-square (or chi-squared) random variable

    A continuous random variable that results from the sum of squares of independent standard normal random variables. It is a special case of a gamma random variable.

  • Completely randomized design (or experiment)

    A type of experimental design in which the treatments or design factors are assigned to the experimental units in a random manner. In designed experiments, a completely randomized design results from running all of the treatment combinations in random order.

  • Continuity correction.

    A correction factor used to improve the approximation to binomial probabilities from a normal distribution.

  • Continuous random variable.

    A random variable with an interval (either inite or ininite) of real numbers for its range.

  • Covariance matrix

    A square matrix that contains the variances and covariances among a set of random variables, say, X1 , X X 2 k , , … . The main diagonal elements of the matrix are the variances of the random variables and the off-diagonal elements are the covariances between Xi and Xj . Also called the variance-covariance matrix. When the random variables are standardized to have unit variances, the covariance matrix becomes the correlation matrix.

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Design matrix

    A matrix that provides the tests that are to be conducted in an experiment.

  • Enumerative study

    A study in which a sample from a population is used to make inference to the population. See Analytic study

  • Expected value

    The expected value of a random variable X is its long-term average or mean value. In the continuous case, the expected value of X is E X xf x dx ( ) = ?? ( ) ? ? where f ( ) x is the density function of the random variable X.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fisher’s least signiicant difference (LSD) method

    A series of pair-wise hypothesis tests of treatment means in an experiment to determine which means differ.

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password