Make up to $500 this semester by taking notes for StudySoup as an Elite Notetaker Apply Now
> > The Basic Practice of Statistics 4

The Basic Practice of Statistics 4th Edition - Solutions by Chapter

Full solutions for The Basic Practice of Statistics | 4th Edition

ISBN: 9780716774785

The Basic Practice of Statistics | 4th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 362 Reviews
Textbook: The Basic Practice of Statistics
Edition: 4
Author: David S. Moore
ISBN: 9780716774785

The Basic Practice of Statistics was written by and is associated to the ISBN: 9780716774785. This expansive textbook survival guide covers the following chapters: 28. The full step-by-step solution to problem in The Basic Practice of Statistics were answered by , our top Statistics solution expert on 03/19/18, 03:36PM. This textbook survival guide was created for the textbook: The Basic Practice of Statistics, edition: 4. Since problems from 28 chapters in The Basic Practice of Statistics have been answered, more than 2573 students have viewed full step-by-step answer.

Key Statistics Terms and definitions covered in this textbook
  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Adjusted R 2

    A variation of the R 2 statistic that compensates for the number of parameters in a regression model. Essentially, the adjustment is a penalty for increasing the number of parameters in the model. Alias. In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Attribute control chart

    Any control chart for a discrete random variable. See Variables control chart.

  • Axioms of probability

    A set of rules that probabilities deined on a sample space must follow. See Probability

  • Bayes’ theorem

    An equation for a conditional probability such as PA B ( | ) in terms of the reverse conditional probability PB A ( | ).

  • Binomial random variable

    A discrete random variable that equals the number of successes in a ixed number of Bernoulli trials.

  • Central limit theorem

    The simplest form of the central limit theorem states that the sum of n independently distributed random variables will tend to be normally distributed as n becomes large. It is a necessary and suficient condition that none of the variances of the individual random variables are large in comparison to their sum. There are more general forms of the central theorem that allow ininite variances and correlated random variables, and there is a multivariate version of the theorem.

  • Comparative experiment

    An experiment in which the treatments (experimental conditions) that are to be studied are included in the experiment. The data from the experiment are used to evaluate the treatments.

  • Completely randomized design (or experiment)

    A type of experimental design in which the treatments or design factors are assigned to the experimental units in a random manner. In designed experiments, a completely randomized design results from running all of the treatment combinations in random order.

  • Conditional probability mass function

    The probability mass function of the conditional probability distribution of a discrete random variable.

  • Consistent estimator

    An estimator that converges in probability to the true value of the estimated parameter as the sample size increases.

  • Counting techniques

    Formulas used to determine the number of elements in sample spaces and events.

  • Critical region

    In hypothesis testing, this is the portion of the sample space of a test statistic that will lead to rejection of the null hypothesis.

  • Cumulative normal distribution function

    The cumulative distribution of the standard normal distribution, often denoted as ?( ) x and tabulated in Appendix Table II.

  • Deming’s 14 points.

    A management philosophy promoted by W. Edwards Deming that emphasizes the importance of change and quality

  • Dependent variable

    The response variable in regression or a designed experiment.

  • Design matrix

    A matrix that provides the tests that are to be conducted in an experiment.

  • Eficiency

    A concept in parameter estimation that uses the variances of different estimators; essentially, an estimator is more eficient than another estimator if it has smaller variance. When estimators are biased, the concept requires modiication.

  • Exhaustive

    A property of a collection of events that indicates that their union equals the sample space.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

×
Log in to StudySoup
Get Full Access to The Basic Practice of Statistics

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to The Basic Practice of Statistics
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here