×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 7.1: What Is a Sampling Distribution?

Full solutions for The Practice of Statistics | 5th Edition

ISBN: 9781464108730

Solutions for Chapter 7.1: What Is a Sampling Distribution?

Solutions for Chapter 7.1
4 5 0 274 Reviews
13
5
Textbook: The Practice of Statistics
Edition: 5
Author: Daren S. Starnes, Josh Tabor
ISBN: 9781464108730

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 7.1: What Is a Sampling Distribution? includes 26 full step-by-step solutions. The Practice of Statistics was written by and is associated to the ISBN: 9781464108730. Since 26 problems in chapter 7.1: What Is a Sampling Distribution? have been answered, more than 6418 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: The Practice of Statistics, edition: 5.

Key Statistics Terms and definitions covered in this textbook
  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • Attribute

    A qualitative characteristic of an item or unit, usually arising in quality control. For example, classifying production units as defective or nondefective results in attributes data.

  • Chi-square test

    Any test of signiicance based on the chi-square distribution. The most common chi-square tests are (1) testing hypotheses about the variance or standard deviation of a normal distribution and (2) testing goodness of it of a theoretical distribution to sample data

  • Conditional probability

    The probability of an event given that the random experiment produces an outcome in another event.

  • Conditional probability density function

    The probability density function of the conditional probability distribution of a continuous random variable.

  • Continuous uniform random variable

    A continuous random variable with range of a inite interval and a constant probability density function.

  • Covariance

    A measure of association between two random variables obtained as the expected value of the product of the two random variables around their means; that is, Cov(X Y, ) [( )( )] =? ? E X Y ? ? X Y .

  • Crossed factors

    Another name for factors that are arranged in a factorial experiment.

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Density function

    Another name for a probability density function

  • Dispersion

    The amount of variability exhibited by data

  • Empirical model

    A model to relate a response to one or more regressors or factors that is developed from data obtained from the system.

  • Estimator (or point estimator)

    A procedure for producing an estimate of a parameter of interest. An estimator is usually a function of only sample data values, and when these data values are available, it results in an estimate of the parameter of interest.

  • Exhaustive

    A property of a collection of events that indicates that their union equals the sample space.

  • F distribution.

    The distribution of the random variable deined as the ratio of two independent chi-square random variables, each divided by its number of degrees of freedom.

  • F-test

    Any test of signiicance involving the F distribution. The most common F-tests are (1) testing hypotheses about the variances or standard deviations of two independent normal distributions, (2) testing hypotheses about treatment means or variance components in the analysis of variance, and (3) testing signiicance of regression or tests on subsets of parameters in a regression model.

  • Generator

    Effects in a fractional factorial experiment that are used to construct the experimental tests used in the experiment. The generators also deine the aliases.

  • Geometric random variable

    A discrete random variable that is the number of Bernoulli trials until a success occurs.

  • Goodness of fit

    In general, the agreement of a set of observed values and a set of theoretical values that depend on some hypothesis. The term is often used in itting a theoretical distribution to a set of observations.

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password