×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 2.3: ADDITIONAL DISPLAYS OF QUANTITATIVE DATA

Statistics: Informed Decisions Using Data | 4th Edition | ISBN: 9780321757272 | Authors: Michael Sullivan, III

Full solutions for Statistics: Informed Decisions Using Data | 4th Edition

ISBN: 9780321757272

Statistics: Informed Decisions Using Data | 4th Edition | ISBN: 9780321757272 | Authors: Michael Sullivan, III

Solutions for Chapter 2.3: ADDITIONAL DISPLAYS OF QUANTITATIVE DATA

Solutions for Chapter 2.3
4 5 0 329 Reviews
20
1
Textbook: Statistics: Informed Decisions Using Data
Edition: 4
Author: Michael Sullivan, III
ISBN: 9780321757272

Statistics: Informed Decisions Using Data was written by and is associated to the ISBN: 9780321757272. This textbook survival guide was created for the textbook: Statistics: Informed Decisions Using Data , edition: 4. Chapter 2.3: ADDITIONAL DISPLAYS OF QUANTITATIVE DATA includes 52 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 52 problems in chapter 2.3: ADDITIONAL DISPLAYS OF QUANTITATIVE DATA have been answered, more than 144279 students have viewed full step-by-step solutions from this chapter.

Key Statistics Terms and definitions covered in this textbook
  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • Analysis of variance (ANOVA)

    A method of decomposing the total variability in a set of observations, as measured by the sum of the squares of these observations from their average, into component sums of squares that are associated with speciic deined sources of variation

  • Bernoulli trials

    Sequences of independent trials with only two outcomes, generally called “success” and “failure,” in which the probability of success remains constant.

  • Biased estimator

    Unbiased estimator.

  • Box plot (or box and whisker plot)

    A graphical display of data in which the box contains the middle 50% of the data (the interquartile range) with the median dividing it, and the whiskers extend to the smallest and largest values (or some deined lower and upper limits).

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Conditional probability density function

    The probability density function of the conditional probability distribution of a continuous random variable.

  • Conditional variance.

    The variance of the conditional probability distribution of a random variable.

  • Continuity correction.

    A correction factor used to improve the approximation to binomial probabilities from a normal distribution.

  • Continuous distribution

    A probability distribution for a continuous random variable.

  • Correlation coeficient

    A dimensionless measure of the linear association between two variables, usually lying in the interval from ?1 to +1, with zero indicating the absence of correlation (but not necessarily the independence of the two variables).

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Dependent variable

    The response variable in regression or a designed experiment.

  • Error of estimation

    The difference between an estimated value and the true value.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fraction defective control chart

    See P chart

  • Frequency distribution

    An arrangement of the frequencies of observations in a sample or population according to the values that the observations take on

  • Gamma function

    A function used in the probability density function of a gamma random variable that can be considered to extend factorials

  • Gamma random variable

    A random variable that generalizes an Erlang random variable to noninteger values of the parameter r

  • Goodness of fit

    In general, the agreement of a set of observed values and a set of theoretical values that depend on some hypothesis. The term is often used in itting a theoretical distribution to a set of observations.

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password