?Consider the decomposition of liquid benzene, \(\mathrm{C}_{6} \mathrm{H}_{6}(l)\), to gaseous acetylene, \(\mathrm{C}_{2} \mathrm{H}_{2}(g)\) :

Chapter 5, Problem 5.48

(choose chapter or problem)

Consider the decomposition of liquid benzene, \(\mathrm{C}_{6} \mathrm{H}_{6}(l)\), to gaseous acetylene, \(\mathrm{C}_{2} \mathrm{H}_{2}(g)\) :

\(\mathrm{C}_{6} \mathrm{H}_{6}(l) \longrightarrow 3 \mathrm{C}_{2} \mathrm{H}_{2}(g) \quad \Delta H=+630 \mathrm{~kJ}\)

(a) What is the enthalpy change for the reverse reaction?

(b) What is \(\Delta H\) for the formation of \(1 \mathrm{~mol}\) of acetylene?

(c) Which is more likely to be thermodynamically favored, the forward reaction or the reverse reaction?

(d) If \(\mathrm{C}_{6} \mathrm{H}_{6}(g)\) were consumed instead of \(\mathrm{C}_{6} \mathrm{H}_{6}(l)\), would you expect the magnitude of \(\Delta H\) to increase, decrease, or stay the same? Explain.

Text Transcription:

C6H6(l)

C2H2(g)

C6H6(l) \longrightarrow 3 C2H2(g) \Delta H = +630 kJ

\Delta H

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back