×
Log in to StudySoup
Get Full Access to Chemistry - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Chemistry - Textbook Survival Guide

In the following acid–base reactions,1 . determine which

Organic Chemistry | 8th Edition | ISBN: 9780321768414 | Authors: L.G. Wade Jr ISBN: 9780321768414 33

Solution for problem 19PS Chapter 1

Organic Chemistry | 8th Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Organic Chemistry | 8th Edition | ISBN: 9780321768414 | Authors: L.G. Wade Jr

Organic Chemistry | 8th Edition

4 5 1 318 Reviews
26
2
Problem 19PS

In the following acid–base reactions,

1 . determine which species are acting as electrophiles (acids) and which are acting as nucleophiles

(bases).

2 . use the curved-arrow formalism to show the movement of electron pairs in these reactions, as well as the imaginary movement in the resonance hybrids of the products.

3 . indicate which reactions are best termed Brønsted–Lowry acid–base reactions.

This reaction is a proton transfer from HCl to  the group of acetaldehyde. Therefore, it is a Brønsted–Lowry acid–base reaction, with HCl acting as the acid (proton donor) and acetaldehyde acting as the base (proton acceptor). Before drawing any curved arrows, remember that arrows must show the movement of electrons from the electron-pair donor (the base) to the electron-pair acceptor (the acid). An arrow must go from the electrons on acetaldehyde that form the bond to the hydrogen atom, and the bond to chlorine must

break, with the chloride ion taking these electrons. Drawing these arrows is easier once we

draw valid Lewis structures for all the reactants and products.

The resonance forms of the product show that a pair of electrons can be moved between

the oxygen atom and the pi bond. The positive charge is delocalized over the carbon

and oxygen atoms, with most of the positive charge on oxygen because all octets are satisfied

in that resonance structure.

In this case, no proton has been transferred, so this is not a Brønsted–Lowry acid–base reaction.

Instead, a bond has formed between the

group. Drawing the Lewis structures helps to show that the group (the nucleophile in this reaction) donates the electrons to form the new bond to acetaldehyde (the electrophile). This result agrees with our intuition that a negatively charged ion is likely to be electron-rich and therefore an electron donor.

Notice that acetaldehyde acts as the nucleophile (Lewis base) in part (a) and as the electrophile (Lewis acid) in part (b). Like most organic compounds, acetaldehyde is both acidic and basic. It acts as a base if we add a strong enough acid to make it donate electrons or accept a proton. It acts as an acid if the base we add is strong enough to donate an electron pair or abstract a proton.

Step-by-Step Solution:
Step 1 of 3

Step-1

Electrophiles:-Electrophiles are the electron loving species. A molecule or ion that accepts a pair of electrons to make a new covalent bond is called an electrophile .

Nucleophiles:-Nucleophiles are the nucleus loving species. A molecule or ion that donates a pair of electrons to form a new covalent bond is called a nucleophile.

In this acid base reaction, proton transferred from HCl to C=O group of   CH3CHO . Therefore HCl is an electrophile and CH3CHO is a nucleophile.

Step-2

The movement of electron pair in this reaction, can be shown by Lewis dot structure.

Here the movements of arrows will be shown in such a way that the movement of electrons from the electron-pair donor (the base) to the electron-pair acceptor (the acid). Thus an arrow must go from the electrons on acetaldehyde that form the bond...

Step 2 of 3

Chapter 1, Problem 19PS is Solved
Step 3 of 3

Textbook: Organic Chemistry
Edition: 8
Author: L.G. Wade Jr
ISBN: 9780321768414

This textbook survival guide was created for the textbook: Organic Chemistry, edition: 8. The full step-by-step solution to problem: 19PS from chapter: 1 was answered by , our top Chemistry solution expert on 05/06/17, 06:41PM. Since the solution to 19PS from 1 chapter was answered, more than 664 students have viewed the full step-by-step answer. Organic Chemistry was written by and is associated to the ISBN: 9780321768414. This full solution covers the following key subjects: base, acid, acetaldehyde, electrons, proton. This expansive textbook survival guide covers 25 chapters, and 1336 solutions. The answer to “In the following acid–base reactions,1 . determine which species are acting as electrophiles (acids) and which are acting as nucleophiles(bases).2 . use the curved-arrow formalism to show the movement of electron pairs in these reactions, as well as the imaginary movement in the resonance hybrids of the products.3 . indicate which reactions are best termed Brønsted–Lowry acid–base reactions. This reaction is a proton transfer from HCl to the group of acetaldehyde. Therefore, it is a Brønsted–Lowry acid–base reaction, with HCl acting as the acid (proton donor) and acetaldehyde acting as the base (proton acceptor). Before drawing any curved arrows, remember that arrows must show the movement of electrons from the electron-pair donor (the base) to the electron-pair acceptor (the acid). An arrow must go from the electrons on acetaldehyde that form the bond to the hydrogen atom, and the bond to chlorine mustbreak, with the chloride ion taking these electrons. Drawing these arrows is easier once wedraw valid Lewis structures for all the reactants and products. The resonance forms of the product show that a pair of electrons can be moved betweenthe oxygen atom and the pi bond. The positive charge is delocalized over the carbonand oxygen atoms, with most of the positive charge on oxygen because all octets are satisfiedin that resonance structure. In this case, no proton has been transferred, so this is not a Brønsted–Lowry acid–base reaction.Instead, a bond has formed between the group. Drawing the Lewis structures helps to show that the group (the nucleophile in this reaction) donates the electrons to form the new bond to acetaldehyde (the electrophile). This result agrees with our intuition that a negatively charged ion is likely to be electron-rich and therefore an electron donor. Notice that acetaldehyde acts as the nucleophile (Lewis base) in part (a) and as the electrophile (Lewis acid) in part (b). Like most organic compounds, acetaldehyde is both acidic and basic. It acts as a base if we add a strong enough acid to make it donate electrons or accept a proton. It acts as an acid if the base we add is strong enough to donate an electron pair or abstract a proton.” is broken down into a number of easy to follow steps, and 359 words.

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

In the following acid–base reactions,1 . determine which

×
Log in to StudySoup
Get Full Access to Chemistry - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Chemistry - Textbook Survival Guide
×
Reset your password