Let A be a positive definite symmetric matrix. Show that there exists an invertible matrix B such that A BT B. [Hint: Use the Spectral Theorem to write A QDQT . Then show that D can be factored as CT C for some invertible matrix C.]
t@lq atWxt C Lq1 =gCt-) linlaq,Qoft-homoserlexua .:e*-'. Straiqht&r,ruard; but mly ,^:ikg ;P r) ineur cpast. cee€d. a) e*l Qcil) io, t, bz 'eine oc cs;ne ,n+>q yrAoc+s/*ns "{ thae- e-xTongnlic|n t / li iI -5-inr* @i' +t;" izroPr+.,r'^l'' \,'i Il -Wl '|'--o€* vkere- '7a-'ivndetwr +"/- @-qy#=3f I + I '.)-la-=3=3 a =) J gaW;q tan+,d Wy"_Ly,_Lty=a=;rffi ., 6ry it Sc,b,'n:( l1=a slnG)* bco*C-r) t /P=a*rxsrn(t)-bsEn[D /'i= - bcosc*) *s o, ::i::B S C -uc) -a(a -b- 3o'-YL= c -3a'-5b =o l- ;;:**t>] J a* b=*r- + y = -7,7E'nc+)* ocos(f) ,--'---.,..-..-.-.-..-.-...........-_......-*-