Solution Found!

For orbitals that are symmetric but not spherical, the

Chapter 3, Problem 92AE

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

For orbitals that are symmetric but not spherical, the contour representations (as in Figures 6.22 and 6.23) suggest where nodal planes exist (that is, where the electron density is zero). For example, the px orbital has a node wherever x = 0. This equation is satisfied by all points on the yz plane, so this plane is called a nodal plane of the px orbital. (a) Determine the nodal plane of the pz orbital. (b) What are the two nodal planes of the dxy orbital? (c) What are the two nodal planes of the orbital?

Questions & Answers

QUESTION:

For orbitals that are symmetric but not spherical, the contour representations (as in Figures 6.22 and 6.23) suggest where nodal planes exist (that is, where the electron density is zero). For example, the px orbital has a node wherever x = 0. This equation is satisfied by all points on the yz plane, so this plane is called a nodal plane of the px orbital. (a) Determine the nodal plane of the pz orbital. (b) What are the two nodal planes of the dxy orbital? (c) What are the two nodal planes of the orbital?

ANSWER:

Problem 92AE

For orbitals that are symmetric but not spherical, the contour representations (as in Figures) suggest where nodal planes exist (that is, where the electron density is zero). For example, the px orbital has a node wherever x = 0. This equation is satisfied by all points on the yz plane, so this plane is called a nodal plane of the px orbital.

-   Figure The p orbitals. (a) Electron-density distribution of a 2p orbital. (b) Contour representations of the three p orbitals. The subscript on the orbital label indicates the axis along which the orbital lies.

-   Figure Contour representations of the five d orbitals.

 

(a) Determine the nodal plane of the  orbital. (b) What are the two nodal planes of the orbital? (c) What are the two nodal planes of the  orbital?

                                                              Step by Step Solution

Step 1 of 3

a)

Nodal plane of  orbital.

                                       

Nodal plane-: xy plane where zv = 0

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back