Platinum nanoparticles of diameter ~2 nm are important catalysts in carbon monoxide

Chapter 20, Problem 14.83

(choose chapter or problem)

Platinum nanoparticles of diameter ~2 nm are important catalysts in carbon monoxide oxidation to carbon dioxide. Platinum crystallizes in a face-centered cubic arrangement with an edge length of \(3.924 \AA\). (a) Estimate how many platinum atoms would fit into a 2.0-nm sphere; the volume of a sphere is \((4 / 3) \pi r\). Recall that \(1 \AA=1 \times 10^{-10} \mathrm{m}\) and \(1 \mathrm{nm}=1 \times 10^{-9} \mathrm{m}\). (b) Estimate how many platinum atoms are on the surface of a 2.0-nm Pt sphere, using the surface area of a sphere \(\left(4 \pi r^{2}\right)\) and assuming that the “footprint” of one Pt atom can be estimated from its atomic diameter of \(2.8 \AA\). (c) Using your results from (a) and (b), calculate the percentage of Pt atoms that are on the surface of a 2.0-nm nanoparticle. (d) Repeat these calculations for a 5.0-nm platinum nanoparticle. (e) Which size of nanoparticle would you expect to be more catalytically active and why?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back