×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Intermediate Algebra 6

Intermediate Algebra 6th Edition - Solutions by Chapter

Intermediate Algebra | 6th Edition | ISBN: 9780321785046 | Authors: Elayn El Martin-Gay

Full solutions for Intermediate Algebra | 6th Edition

ISBN: 9780321785046

Intermediate Algebra | 6th Edition | ISBN: 9780321785046 | Authors: Elayn El Martin-Gay

Intermediate Algebra | 6th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 251 Reviews
Textbook: Intermediate Algebra
Edition: 6
Author: Elayn El Martin-Gay
ISBN: 9780321785046

This textbook survival guide was created for the textbook: Intermediate Algebra, edition: 6. The full step-by-step solution to problem in Intermediate Algebra were answered by , our top Math solution expert on 12/23/17, 04:59PM. Since problems from 90 chapters in Intermediate Algebra have been answered, more than 244155 students have viewed full step-by-step answer. This expansive textbook survival guide covers the following chapters: 90. Intermediate Algebra was written by and is associated to the ISBN: 9780321785046.

Key Math Terms and definitions covered in this textbook
  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.