 Chapter 1: Speaking Mathematically
 Chapter 10: Graphs and Trees
 Chapter 2: THE LOGIC OF COMPOUND STATEMENTS
 Chapter 3: The Logic of Quantied Statements
 Chapter 4: Elementary Number Theory and Methods of Proof
 Chapter 5: Sequences, Mathematical Induction, and Recursion
 Chapter 6: Set Theory
 Chapter 7: Functions
 Chapter 8: Relations
 Chapter 9: Counting and Probability
Discrete Mathematics: Introduction to Mathematical Reasoning 1st Edition  Solutions by Chapter
Full solutions for Discrete Mathematics: Introduction to Mathematical Reasoning  1st Edition
ISBN: 9780495826170
Discrete Mathematics: Introduction to Mathematical Reasoning  1st Edition  Solutions by Chapter
Get Full SolutionsSince problems from 10 chapters in Discrete Mathematics: Introduction to Mathematical Reasoning have been answered, more than 8120 students have viewed full stepbystep answer. Discrete Mathematics: Introduction to Mathematical Reasoning was written by and is associated to the ISBN: 9780495826170. This textbook survival guide was created for the textbook: Discrete Mathematics: Introduction to Mathematical Reasoning, edition: 1. The full stepbystep solution to problem in Discrete Mathematics: Introduction to Mathematical Reasoning were answered by , our top Math solution expert on 01/04/18, 08:37PM. This expansive textbook survival guide covers the following chapters: 10.

Big formula for n by n determinants.
Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or  sign.

Commuting matrices AB = BA.
If diagonalizable, they share n eigenvectors.

Distributive Law
A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.
Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

Eigenvalue A and eigenvector x.
Ax = AX with x#O so det(A  AI) = o.

Free variable Xi.
Column i has no pivot in elimination. We can give the n  r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

Fundamental Theorem.
The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n  r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

GaussJordan method.
Invert A by row operations on [A I] to reach [I AI].

Independent vectors VI, .. " vk.
No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

Minimal polynomial of A.
The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A  AI) if no eigenvalues are repeated; always meA) divides peA).

Norm
IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

Normal matrix.
If N NT = NT N, then N has orthonormal (complex) eigenvectors.

Pascal matrix
Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

Plane (or hyperplane) in Rn.
Vectors x with aT x = O. Plane is perpendicular to a =1= O.

Polar decomposition A = Q H.
Orthogonal Q times positive (semi)definite H.

Row picture of Ax = b.
Each equation gives a plane in Rn; the planes intersect at x.

Singular Value Decomposition
(SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

Symmetric factorizations A = LDLT and A = QAQT.
Signs in A = signs in D.

Vector space V.
Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

Volume of box.
The rows (or the columns) of A generate a box with volume I det(A) I.