×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.1 1: Differential equations with discontinuous right-hand sides

Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition | ISBN: 9780387908069 | Authors: M. Braun

Full solutions for Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition

ISBN: 9780387908069

Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition | ISBN: 9780387908069 | Authors: M. Braun

Solutions for Chapter 2.1 1: Differential equations with discontinuous right-hand sides

This textbook survival guide was created for the textbook: Differential Equations and Their Applications: An Introduction to Applied Mathematics, edition: 3. This expansive textbook survival guide covers the following chapters and their solutions. Since 12 problems in chapter 2.1 1: Differential equations with discontinuous right-hand sides have been answered, more than 6487 students have viewed full step-by-step solutions from this chapter. Differential Equations and Their Applications: An Introduction to Applied Mathematics was written by and is associated to the ISBN: 9780387908069. Chapter 2.1 1: Differential equations with discontinuous right-hand sides includes 12 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password