Solutions for Chapter 5.2: Solving Systems of Equations Using Substitution

Discovering Algebra: An Investigative Approach | 2nd Edition | ISBN: 9781559537636 | Authors: Jerald Murdock, Ellen Kamischke, Eric Kamischke

Full solutions for Discovering Algebra: An Investigative Approach | 2nd Edition

ISBN: 9781559537636

Discovering Algebra: An Investigative Approach | 2nd Edition | ISBN: 9781559537636 | Authors: Jerald Murdock, Ellen Kamischke, Eric Kamischke

Solutions for Chapter 5.2: Solving Systems of Equations Using Substitution

Solutions for Chapter 5.2
4 5 0 386 Reviews
21
0
Textbook: Discovering Algebra: An Investigative Approach
Edition: 2
Author: Jerald Murdock, Ellen Kamischke, Eric Kamischke
ISBN: 9781559537636

Discovering Algebra: An Investigative Approach was written by Patricia and is associated to the ISBN: 9781559537636. Chapter 5.2: Solving Systems of Equations Using Substitution includes 18 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Discovering Algebra: An Investigative Approach, edition: 2. Since 18 problems in chapter 5.2: Solving Systems of Equations Using Substitution have been answered, more than 3075 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Discovering Algebra: An Investigative Approach

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Discovering Algebra: An Investigative Approach
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here