×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 8: GROUPS AND SYMMETRY

Modern Algebra: An Introduction | 6th Edition | ISBN: 9780470384435 | Authors: John R. Durbin

Full solutions for Modern Algebra: An Introduction | 6th Edition

ISBN: 9780470384435

Modern Algebra: An Introduction | 6th Edition | ISBN: 9780470384435 | Authors: John R. Durbin

Solutions for Chapter 8: GROUPS AND SYMMETRY

Solutions for Chapter 8
4 5 0 293 Reviews
24
3
Textbook: Modern Algebra: An Introduction
Edition: 6
Author: John R. Durbin
ISBN: 9780470384435

Modern Algebra: An Introduction was written by and is associated to the ISBN: 9780470384435. This textbook survival guide was created for the textbook: Modern Algebra: An Introduction, edition: 6. Chapter 8: GROUPS AND SYMMETRY includes 18 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 18 problems in chapter 8: GROUPS AND SYMMETRY have been answered, more than 7906 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password