Solutions for Chapter 5.3: Discrete Mathematics with Applications 4th Edition

Discrete Mathematics with Applications | 4th Edition | ISBN: 9780495391326 | Authors: Susanna S. Epp

Full solutions for Discrete Mathematics with Applications | 4th Edition

ISBN: 9780495391326

Discrete Mathematics with Applications | 4th Edition | ISBN: 9780495391326 | Authors: Susanna S. Epp

Solutions for Chapter 5.3

Solutions for Chapter 5.3
4 5 0 303 Reviews
13
2
Textbook: Discrete Mathematics with Applications
Edition: 4th
Author: Susanna S. Epp
ISBN: 9780495391326

This textbook survival guide was created for the textbook: Discrete Mathematics with Applications , edition: 4th. Discrete Mathematics with Applications was written by Sieva Kozinsky and is associated to the ISBN: 9780495391326. This expansive textbook survival guide covers the following chapters and their solutions. Since 40 problems in chapter 5.3 have been answered, more than 24022 students have viewed full step-by-step solutions from this chapter. Chapter 5.3 includes 40 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Discrete Mathematics with Applications

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Discrete Mathematics with Applications
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here

×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here