Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.1: Radian Measure

Full solutions for Trigonometry | 11th Edition

ISBN: 9780134217437

Solutions for Chapter 3.1: Radian Measure

Solutions for Chapter 3.1
4 5 0 324 Reviews
Textbook: Trigonometry
Edition: 11
Author: Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
ISBN: 9780134217437

Since 96 problems in chapter 3.1: Radian Measure have been answered, more than 26033 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Trigonometry was written by and is associated to the ISBN: 9780134217437. This textbook survival guide was created for the textbook: Trigonometry, edition: 11. Chapter 3.1: Radian Measure includes 96 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
Reset your password