×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 6.2: Gram-Schmidt Orthogonalization Process

Linear Algebra | 4th Edition | ISBN: 9780130084514 | Authors: Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence

Full solutions for Linear Algebra | 4th Edition

ISBN: 9780130084514

Linear Algebra | 4th Edition | ISBN: 9780130084514 | Authors: Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence

Solutions for Chapter 6.2: Gram-Schmidt Orthogonalization Process

Solutions for Chapter 6.2
4 5 0 260 Reviews
29
3
Textbook: Linear Algebra
Edition: 4
Author: Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence
ISBN: 9780130084514

This expansive textbook survival guide covers the following chapters and their solutions. Linear Algebra was written by and is associated to the ISBN: 9780130084514. Chapter 6.2: Gram-Schmidt Orthogonalization Process includes 23 full step-by-step solutions. Since 23 problems in chapter 6.2: Gram-Schmidt Orthogonalization Process have been answered, more than 10870 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Linear Algebra , edition: 4.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password