×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 5.4: Elementary Statistics 12th Edition

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Full solutions for Elementary Statistics | 12th Edition

ISBN: 9780321836960

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Solutions for Chapter 5.4

Solutions for Chapter 5.4
4 5 0 388 Reviews
19
1
Textbook: Elementary Statistics
Edition: 12
Author: Mario F. Triola
ISBN: 9780321836960

This textbook survival guide was created for the textbook: Elementary Statistics, edition: 12. Elementary Statistics was written by and is associated to the ISBN: 9780321836960. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 5.4 includes 23 full step-by-step solutions. Since 23 problems in chapter 5.4 have been answered, more than 387590 students have viewed full step-by-step solutions from this chapter.

Key Statistics Terms and definitions covered in this textbook
  • Alternative hypothesis

    In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

  • Bayes’ theorem

    An equation for a conditional probability such as PA B ( | ) in terms of the reverse conditional probability PB A ( | ).

  • Bimodal distribution.

    A distribution with two modes

  • Center line

    A horizontal line on a control chart at the value that estimates the mean of the statistic plotted on the chart. See Control chart.

  • Comparative experiment

    An experiment in which the treatments (experimental conditions) that are to be studied are included in the experiment. The data from the experiment are used to evaluate the treatments.

  • Conditional probability distribution

    The distribution of a random variable given that the random experiment produces an outcome in an event. The given event might specify values for one or more other random variables

  • Consistent estimator

    An estimator that converges in probability to the true value of the estimated parameter as the sample size increases.

  • Continuous random variable.

    A random variable with an interval (either inite or ininite) of real numbers for its range.

  • Counting techniques

    Formulas used to determine the number of elements in sample spaces and events.

  • Deming

    W. Edwards Deming (1900–1993) was a leader in the use of statistical quality control.

  • Dependent variable

    The response variable in regression or a designed experiment.

  • Discrete uniform random variable

    A discrete random variable with a inite range and constant probability mass function.

  • Error variance

    The variance of an error term or component in a model.

  • Event

    A subset of a sample space.

  • Experiment

    A series of tests in which changes are made to the system under study

  • Extra sum of squares method

    A method used in regression analysis to conduct a hypothesis test for the additional contribution of one or more variables to a model.

  • Factorial experiment

    A type of experimental design in which every level of one factor is tested in combination with every level of another factor. In general, in a factorial experiment, all possible combinations of factor levels are tested.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Geometric mean.

    The geometric mean of a set of n positive data values is the nth root of the product of the data values; that is, g x i n i n = ( ) = / w 1 1 .

  • Geometric random variable

    A discrete random variable that is the number of Bernoulli trials until a success occurs.