Solutions for Chapter 9.5: Elementary Statistics 12th Edition

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Full solutions for Elementary Statistics | 12th Edition

ISBN: 9780321836960

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Solutions for Chapter 9.5

Solutions for Chapter 9.5
4 5 0 282 Reviews
11
3
Textbook: Elementary Statistics
Edition: 12th
Author: Mario F. Triola
ISBN: 9780321836960

Chapter 9.5 includes 33 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Elementary Statistics, edition: 12th. Since 33 problems in chapter 9.5 have been answered, more than 92834 students have viewed full step-by-step solutions from this chapter. Elementary Statistics was written by Sieva Kozinsky and is associated to the ISBN: 9780321836960.

Key Statistics Terms and definitions covered in this textbook
  • 2 k p - factorial experiment

    A fractional factorial experiment with k factors tested in a 2 ? p fraction with all factors tested at only two levels (settings) each

  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Adjusted R 2

    A variation of the R 2 statistic that compensates for the number of parameters in a regression model. Essentially, the adjustment is a penalty for increasing the number of parameters in the model. Alias. In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Bayes’ estimator

    An estimator for a parameter obtained from a Bayesian method that uses a prior distribution for the parameter along with the conditional distribution of the data given the parameter to obtain the posterior distribution of the parameter. The estimator is obtained from the posterior distribution.

  • Bernoulli trials

    Sequences of independent trials with only two outcomes, generally called “success” and “failure,” in which the probability of success remains constant.

  • Bivariate normal distribution

    The joint distribution of two normal random variables

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Conditional probability distribution

    The distribution of a random variable given that the random experiment produces an outcome in an event. The given event might specify values for one or more other random variables

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Control limits

    See Control chart.

  • Correlation

    In the most general usage, a measure of the interdependence among data. The concept may include more than two variables. The term is most commonly used in a narrow sense to express the relationship between quantitative variables or ranks.

  • Cumulative normal distribution function

    The cumulative distribution of the standard normal distribution, often denoted as ?( ) x and tabulated in Appendix Table II.

  • Cumulative sum control chart (CUSUM)

    A control chart in which the point plotted at time t is the sum of the measured deviations from target for all statistics up to time t

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Designed experiment

    An experiment in which the tests are planned in advance and the plans usually incorporate statistical models. See Experiment

  • Discrete uniform random variable

    A discrete random variable with a inite range and constant probability mass function.

  • Event

    A subset of a sample space.

  • Exponential random variable

    A series of tests in which changes are made to the system under study

  • Goodness of fit

    In general, the agreement of a set of observed values and a set of theoretical values that depend on some hypothesis. The term is often used in itting a theoretical distribution to a set of observations.

×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here