> > Introduction to Probability, 2

Introduction to Probability, 2nd Edition - Solutions by Chapter

Introduction to Probability, | 2nd Edition | ISBN: 9781886529236 | Authors: Dimitri P. Bertsekas John N. Tsitsiklis

Full solutions for Introduction to Probability, | 2nd Edition

ISBN: 9781886529236

Introduction to Probability, | 2nd Edition | ISBN: 9781886529236 | Authors: Dimitri P. Bertsekas John N. Tsitsiklis

Introduction to Probability, | 2nd Edition - Solutions by Chapter

Introduction to Probability, was written by Patricia and is associated to the ISBN: 9781886529236. This expansive textbook survival guide covers the following chapters: 9. The full step-by-step solution to problem in Introduction to Probability, were answered by Patricia, our top Statistics solution expert on 01/09/18, 07:43PM. Since problems from 9 chapters in Introduction to Probability, have been answered, more than 2354 students have viewed full step-by-step answer. This textbook survival guide was created for the textbook: Introduction to Probability,, edition: 2.

Key Statistics Terms and definitions covered in this textbook
  • Alias

    In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Bernoulli trials

    Sequences of independent trials with only two outcomes, generally called “success” and “failure,” in which the probability of success remains constant.

  • Categorical data

    Data consisting of counts or observations that can be classiied into categories. The categories may be descriptive.

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Central composite design (CCD)

    A second-order response surface design in k variables consisting of a two-level factorial, 2k axial runs, and one or more center points. The two-level factorial portion of a CCD can be a fractional factorial design when k is large. The CCD is the most widely used design for itting a second-order model.

  • Central limit theorem

    The simplest form of the central limit theorem states that the sum of n independently distributed random variables will tend to be normally distributed as n becomes large. It is a necessary and suficient condition that none of the variances of the individual random variables are large in comparison to their sum. There are more general forms of the central theorem that allow ininite variances and correlated random variables, and there is a multivariate version of the theorem.

  • Coeficient of determination

    See R 2 .

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Continuous uniform random variable

    A continuous random variable with range of a inite interval and a constant probability density function.

  • Control limits

    See Control chart.

  • Correction factor

    A term used for the quantity ( / )( ) 1 1 2 n xi i n ? = that is subtracted from xi i n 2 ? =1 to give the corrected sum of squares deined as (/ ) ( ) 1 1 2 n xx i x i n ? = i ? . The correction factor can also be written as nx 2 .

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Density function

    Another name for a probability density function

  • Eficiency

    A concept in parameter estimation that uses the variances of different estimators; essentially, an estimator is more eficient than another estimator if it has smaller variance. When estimators are biased, the concept requires modiication.

  • Enumerative study

    A study in which a sample from a population is used to make inference to the population. See Analytic study

  • Error mean square

    The error sum of squares divided by its number of degrees of freedom.

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • False alarm

    A signal from a control chart when no assignable causes are present

×
Log in to StudySoup
Get Full Access to Introduction to Probability,

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Introduction to Probability,
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here