×
Get Full Access to Discrete Mathematics And Its Applications - 7 Edition - Chapter 4.3 - Problem 33e
Get Full Access to Discrete Mathematics And Its Applications - 7 Edition - Chapter 4.3 - Problem 33e

×

# Use the Euclidean algorithm to finda) gcd(12,

ISBN: 9780073383095 37

## Solution for problem 33E Chapter 4.3

Discrete Mathematics and Its Applications | 7th Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants

Discrete Mathematics and Its Applications | 7th Edition

4 5 1 260 Reviews
12
5
Problem 33E

Use the Euclidean algorithm to finda) gcd(12, 18).________________b) gcd(111, 201).________________c) gcd(1001, 1331).________________d) gcd( 12345, 54321).________________e) gcd(1000, 5040).________________f) gcd(9888, 6060).

Step-by-Step Solution:
Step 1 of 3

Solution:-Step1Given thatWe have to use the Euclidean algorithm to find gcd.Step2a) gcd(12, 18)By using Euclidean algorithmAs 6 is the last nonzero remainder.Therefore, gcd(12, 18) is 6.Step3b) gcd(111, 201)By using Euclidean algorithmAs 3 is the last nonzero remainder.Therefore, gcd(111, 201) is 3.Step4c) gcd(1001, 1331)By using Euclidean algorithmAs 11 is the last nonzero remainder.Therefore, gcd(1001, 1331) is 11.Step5d) gcd( 12345, 54321)By using Euclidean algorithmAs 3 is the last nonzero remainder.Therefore, gcd( 12345, 54321) is 3.Step6e) gcd(1000, 5040)By using Euclidean algorithmAs 40 is the last nonzero remainder.Therefore, gcd(1000, 5040) is 40.Step7f) gcd(9888, 6060)By using Euclidean algorithmAs 12 is the last nonzero remainder.Therefore, gcd(9888, 6060) is 12.

Step 2 of 3

Step 3 of 3

#### Related chapters

Unlock Textbook Solution