×
Log in to StudySoup
Get Full Access to Chemistry: The Central Science - 12 Edition - Chapter 5 - Problem 77e
Join StudySoup for FREE
Get Full Access to Chemistry: The Central Science - 12 Edition - Chapter 5 - Problem 77e

Already have an account? Login here
×
Reset your password

Gasoline is composed primarily of hydrocarbons, including

Chemistry: The Central Science | 12th Edition | ISBN: 9780321696724 | Authors: Theodore E. Brown; H. Eugene LeMay; Bruce E. Bursten; Catherine Murphy; Patrick Woodward ISBN: 9780321696724 27

Solution for problem 77E Chapter 5

Chemistry: The Central Science | 12th Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Chemistry: The Central Science | 12th Edition | ISBN: 9780321696724 | Authors: Theodore E. Brown; H. Eugene LeMay; Bruce E. Bursten; Catherine Murphy; Patrick Woodward

Chemistry: The Central Science | 12th Edition

4 5 1 359 Reviews
24
2
Problem 77E

Gasoline is composed primarily of hydrocarbons, including many with eight carbon atoms, called octanes. One of the cleanest-burning octanes is a compound called 2,3,4-trimethylpentane, which has the following structural formula:

The complete combustion of one mole of this compound to \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g)\) leads to \(\Delta H^{\circ}=-5064.9\mathrm{\ kJ}/\mathrm{mol}\). (a) Write a balanced equation for the combustion of \(1 \ mol\) of \(\mathrm{C}_{8} \mathrm{H}_{18}(l)\). (b) Write a balanced equation for the formation of \(\mathrm{C}_{8} \mathrm{H}_{18}(l)\) from its elements. (c) By using the information in this problem and data in Table 5.3, calculate \(\Delta H_{f}^{\circ}\) for 2,3,4- trimethylpentane.

Equation Transcription:

Text Transcription:

CO_2 (g)

H_2 O(g)

Delta H degree = -5064.9 kJ/mol

1 mol

C_8 H_18 (l)

C_8 H_18 (l)

Delta H_f ^degree

Step-by-Step Solution:
Step 1 of 3

Week 12 notes th March 30 Notes Monte Carol Simulation  Use when decisions are made with random events  Decision Tree: only random events with discrete outcomes o Discrete outcome=countable or limited number of outcomes  Monte Carlo Simulation: random events w/ discrete and continuous outcomes o Continuous outcome=every possible outcome in a range o Can use parametric and structural sensitivity easily  =RAND(x) function o Generates random number between 0 and 0.99999… o Re-calculates by pressing F9 (on PC) o Every number is equally likely (uniform distribution) o If make a histogram of 1000 trials of RAND fxn, all bars should be equal height  Uniform distribution outside 0-1 o Ex. Get random number between 10 and 25:  10+(25-10) x RAND()  10= lower limit  (25-10)=range  Why at least 10 (lower limit) and rand can be anywhere between 0-1 so multiply by range to put outcome between 10-25 o Get random integer values between 60 and 75  RANDBETWEEN(60,75)  =RANDBETWEEN gives integer values only  Simulating 2 outcome discrete distributions o Ex. Simulate event that may happen with probability of 0.4  =IF(RAND()<0.4, 1, 0)  Why Rand will give number between 0-1 0-0.4 0.4-1 Hit flop 40% 60%  Binary 1=hit and 0=flop  Random Number from a Normal Distribution Normal Distribution 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2   Ex. Mean=100, SD=20  NORM.INV(RAND, 100, 20)=will give number on x-axis  normal distribution probability  will create a norm distribution histogram  use rand fxn to replace probability Baby Lee’s Doughnuts Baby Lee’s Doughnuts stocks exactly 33 super-duper doughnuts every day. Each super-duper doughnut sells for $2. Unsold doughnuts are eaten by Baby Lee at the end of the day. Daily demand for super-duper doughnuts is a random event and is given by the following probability distribution. Develop a simulation model to determine the mean and standard deviation of daily revenue obtained from the sale of the super-duper doughnuts.  Decision tree 0.4 32 o 0.3 33 0.3 34  Make range from 0-1 with 3 possible outcomes3 sub-ranges  Boundary of ranges correspond with probabilities of each value 32 33 34 0 0.4 0.7 0.4 0.7 1 40% 30% 30%  In excel B C D E 2 Demand 32 33 34 3 Probability 0.4 0.3 0.3 Simulation Calculations  Demand: =IF(B10250")/1000 o Give percent chance that of donations being over $250  Percentage changes every time but stays in a certain range  Increase number of trialsnarrow range of answers

Step 2 of 3

Chapter 5, Problem 77E is Solved
Step 3 of 3

Textbook: Chemistry: The Central Science
Edition: 12
Author: Theodore E. Brown; H. Eugene LeMay; Bruce E. Bursten; Catherine Murphy; Patrick Woodward
ISBN: 9780321696724

Other solutions

People also purchased

Related chapters

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

Gasoline is composed primarily of hydrocarbons, including