×
Log in to StudySoup
Get Full Access to Mathematics Education - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Mathematics Education - Textbook Survival Guide

Solutions for Chapter 5.6: Number Theory and the Real Number System

A Survey of Mathematics with Applications | 9th Edition | ISBN:  9780321759665 | Authors: Allen R. Angel, Christine D. Abbott, Dennis C. Runde

Full solutions for A Survey of Mathematics with Applications | 9th Edition

ISBN: 9780321759665

A Survey of Mathematics with Applications | 9th Edition | ISBN:  9780321759665 | Authors: Allen R. Angel, Christine D. Abbott, Dennis C. Runde

Solutions for Chapter 5.6: Number Theory and the Real Number System

Solutions for Chapter 5.6
4 5 0 356 Reviews
28
0
Textbook: A Survey of Mathematics with Applications
Edition: 9
Author: Allen R. Angel, Christine D. Abbott, Dennis C. Runde
ISBN: 9780321759665

This expansive textbook survival guide covers the following chapters and their solutions. A Survey of Mathematics with Applications was written by and is associated to the ISBN: 9780321759665. Chapter 5.6: Number Theory and the Real Number System includes 113 full step-by-step solutions. This textbook survival guide was created for the textbook: A Survey of Mathematics with Applications, edition: 9. Since 113 problems in chapter 5.6: Number Theory and the Real Number System have been answered, more than 71185 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Mathematics Education - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Mathematics Education - Textbook Survival Guide
×
Reset your password