Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5.3: Least Squares Problems

Full solutions for Linear Algebra with Applications | 9th Edition

ISBN: 9780321962218

Solutions for Chapter 5.3: Least Squares Problems

Since 15 problems in chapter 5.3: Least Squares Problems have been answered, more than 12006 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 9. This expansive textbook survival guide covers the following chapters and their solutions. Linear Algebra with Applications was written by and is associated to the ISBN: 9780321962218. Chapter 5.3: Least Squares Problems includes 15 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
Reset your password