×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
Textbooks / Statistics / Probability and Statistics for Engineers and the Scientists 9

Probability and Statistics for Engineers and the Scientists 9th Edition - Solutions by Chapter

Probability and Statistics for Engineers and the Scientists | 9th Edition | ISBN: 9780321629111 | Authors: Ronald E. Walpole; Raymond H. Myers; Sharon L. Myers; Keying E. Ye

Full solutions for Probability and Statistics for Engineers and the Scientists | 9th Edition

ISBN: 9780321629111

Probability and Statistics for Engineers and the Scientists | 9th Edition | ISBN: 9780321629111 | Authors: Ronald E. Walpole; Raymond H. Myers; Sharon L. Myers; Keying E. Ye

Probability and Statistics for Engineers and the Scientists | 9th Edition - Solutions by Chapter

Since problems from 18 chapters in Probability and Statistics for Engineers and the Scientists have been answered, more than 145579 students have viewed full step-by-step answer. This textbook survival guide was created for the textbook: Probability and Statistics for Engineers and the Scientists, edition: 9. This expansive textbook survival guide covers the following chapters: 18. Probability and Statistics for Engineers and the Scientists was written by and is associated to the ISBN: 9780321629111. The full step-by-step solution to problem in Probability and Statistics for Engineers and the Scientists were answered by , our top Statistics solution expert on 05/06/17, 06:21PM.

Key Statistics Terms and definitions covered in this textbook
  • Acceptance region

    In hypothesis testing, a region in the sample space of the test statistic such that if the test statistic falls within it, the null hypothesis cannot be rejected. This terminology is used because rejection of H0 is always a strong conclusion and acceptance of H0 is generally a weak conclusion

  • Attribute

    A qualitative characteristic of an item or unit, usually arising in quality control. For example, classifying production units as defective or nondefective results in attributes data.

  • Box plot (or box and whisker plot)

    A graphical display of data in which the box contains the middle 50% of the data (the interquartile range) with the median dividing it, and the whiskers extend to the smallest and largest values (or some deined lower and upper limits).

  • Categorical data

    Data consisting of counts or observations that can be classiied into categories. The categories may be descriptive.

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Contingency table.

    A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

  • Continuous distribution

    A probability distribution for a continuous random variable.

  • Density function

    Another name for a probability density function

  • Designed experiment

    An experiment in which the tests are planned in advance and the plans usually incorporate statistical models. See Experiment

  • Empirical model

    A model to relate a response to one or more regressors or factors that is developed from data obtained from the system.

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • Exponential random variable

    A series of tests in which changes are made to the system under study

  • False alarm

    A signal from a control chart when no assignable causes are present

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fixed factor (or fixed effect).

    In analysis of variance, a factor or effect is considered ixed if all the levels of interest for that factor are included in the experiment. Conclusions are then valid about this set of levels only, although when the factor is quantitative, it is customary to it a model to the data for interpolating between these levels.

  • Gaussian distribution

    Another name for the normal distribution, based on the strong connection of Karl F. Gauss to the normal distribution; often used in physics and electrical engineering applications

  • Geometric mean.

    The geometric mean of a set of n positive data values is the nth root of the product of the data values; that is, g x i n i n = ( ) = / w 1 1 .

  • Geometric random variable

    A discrete random variable that is the number of Bernoulli trials until a success occurs.

  • Harmonic mean

    The harmonic mean of a set of data values is the reciprocal of the arithmetic mean of the reciprocals of the data values; that is, h n x i n i = ? ? ? ? ? = ? ? 1 1 1 1 g .

  • Hat matrix.

    In multiple regression, the matrix H XXX X = ( ) ? ? -1 . This a projection matrix that maps the vector of observed response values into a vector of itted values by yˆ = = X X X X y Hy ( ) ? ? ?1 .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password