×
Log in to StudySoup

Forgot password? Reset password here

> > Mathematical Statistics with Applications 7

Mathematical Statistics with Applications 7th Edition - Solutions by Chapter

Mathematical Statistics with Applications | 7th Edition | ISBN: 9780495110811 | Authors: Dennis Wackerly; William Mendenhall; Richard L. Scheaffer

Full solutions for Mathematical Statistics with Applications | 7th Edition

ISBN: 9780495110811

Mathematical Statistics with Applications | 7th Edition | ISBN: 9780495110811 | Authors: Dennis Wackerly; William Mendenhall; Richard L. Scheaffer

Mathematical Statistics with Applications | 7th Edition - Solutions by Chapter

This expansive textbook survival guide covers the following chapters: 32. Mathematical Statistics with Applications was written by and is associated to the ISBN: 9780495110811. The full step-by-step solution to problem in Mathematical Statistics with Applications were answered by , our top Statistics solution expert on 07/18/17, 08:07AM. Since problems from 32 chapters in Mathematical Statistics with Applications have been answered, more than 87652 students have viewed full step-by-step answer. This textbook survival guide was created for the textbook: Mathematical Statistics with Applications , edition: 7.

Key Statistics Terms and definitions covered in this textbook
  • Average run length, or ARL

    The average number of samples taken in a process monitoring or inspection scheme until the scheme signals that the process is operating at a level different from the level in which it began.

  • Backward elimination

    A method of variable selection in regression that begins with all of the candidate regressor variables in the model and eliminates the insigniicant regressors one at a time until only signiicant regressors remain

  • Bias

    An effect that systematically distorts a statistical result or estimate, preventing it from representing the true quantity of interest.

  • Categorical data

    Data consisting of counts or observations that can be classiied into categories. The categories may be descriptive.

  • Central tendency

    The tendency of data to cluster around some value. Central tendency is usually expressed by a measure of location such as the mean, median, or mode.

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Components of variance

    The individual components of the total variance that are attributable to speciic sources. This usually refers to the individual variance components arising from a random or mixed model analysis of variance.

  • Conditional probability

    The probability of an event given that the random experiment produces an outcome in another event.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Continuous distribution

    A probability distribution for a continuous random variable.

  • Contour plot

    A two-dimensional graphic used for a bivariate probability density function that displays curves for which the probability density function is constant.

  • Contrast

    A linear function of treatment means with coeficients that total zero. A contrast is a summary of treatment means that is of interest in an experiment.

  • Counting techniques

    Formulas used to determine the number of elements in sample spaces and events.

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Discrete distribution

    A probability distribution for a discrete random variable

  • Erlang random variable

    A continuous random variable that is the sum of a ixed number of independent, exponential random variables.

  • Estimator (or point estimator)

    A procedure for producing an estimate of a parameter of interest. An estimator is usually a function of only sample data values, and when these data values are available, it results in an estimate of the parameter of interest.

  • Experiment

    A series of tests in which changes are made to the system under study

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

  • Generator

    Effects in a fractional factorial experiment that are used to construct the experimental tests used in the experiment. The generators also deine the aliases.

×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here