×
Log in to StudySoup
Get Full Access to Physics For Scientists & Engineers With Modern Physics - 4 Edition - Chapter 5 - Problem 5.82
Join StudySoup for FREE
Get Full Access to Physics For Scientists & Engineers With Modern Physics - 4 Edition - Chapter 5 - Problem 5.82

Already have an account? Login here
×
Reset your password

In a Rotor-ride at a carnival, people rotate in a

Physics for Scientists & Engineers with Modern Physics | 4th Edition | ISBN: 9780131495081 | Authors: Douglas C. Giancoli ISBN: 9780131495081 132

Solution for problem 5.82 Chapter 5

Physics for Scientists & Engineers with Modern Physics | 4th Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Physics for Scientists & Engineers with Modern Physics | 4th Edition | ISBN: 9780131495081 | Authors: Douglas C. Giancoli

Physics for Scientists & Engineers with Modern Physics | 4th Edition

4 5 1 311 Reviews
21
5
Problem 5.82

In a Rotor-ride at a carnival, people rotate in a verticalcylindrically walled room. (See Fig. 5-49). If the roomradius was 5.5 m, and the rotation frequency 0.50 revolutionsper second when the floor drops out, whatminimum coefficient of static friction keeps the people fromslipping down? People on this ride said they were pressedagainst the wall. Is there really an outward force pressingthem against the wall? If so, what is its source? If not, whatis the proper description of their situation (besides nausea)?[Hint: Draw a free-body diagram for a person.] FIGURE 5-49 82.

Step-by-Step Solution:
Step 1 of 3

Midterm Study Guide #3 ' ' 21=1 K.090.09 0 oy ioxgz Rytx y -2 k¥ 21=2 0 0 081 ; ×=0y)y=o y0t 0 =§p×,y#y , 0.01 0.18 edpxtdxefdhffotio 10.110.040.81 Given 0'foo9 21=221=10 O 0.81 0.81 .IEIofdoiY snEo px.ycx.gl P4#={YiliYET pyly 1- Fin: 0.o; y=. ¥¥ ;ow ,EHtEtp =§P#Ky) mPMFinal P qkntpylgh ) -2 k¥ E(D= 0*0.0-11*0.18+2*0 Bx=o y=oy㱺 y 0.01=1 xjtoo0.1/0.0910-81 :# 0.81 0.81 Pyly T Ely)=0*0.1+1*0.-12*0.8Pxytx ,y)y=oyit :0.1/0.0910-81 =1.71=0.09+1.62 y.tk#x:# 0.81 0.81 Pyly T ex Fi(w) ,where W=×y %={ 0,44 } ' ECWKEGY ) Bycx,y)y=o㱺y=z ¥÷s*¥*x . www.theikdWYYE8oBEhEF=o*#I*o.oa+e*o.aw=X+ay 0 ; &W . 0.09+3.24=3.33 fnway±} - it'sless work wayzwMuwȼwethis technique ) evaluatethe functiofereverypossikkxoy , make E{9(×,y)}=§§g(x,yjp(×=x,y=y Matri,tpoihtwisemultiplication ' xl 0 I 2 × 't0 I 2 o 0 * 0 I 0 I 2 10.090.09 - EK ) 0010 2 4 21 00=>01*0081)+(4*0.81) 3.33 - ,y = ELW) Ecxy ) PMF joint onlyfortineas ex)Given : Learned : NEK Px ,y(x,y)=PK=X ,y=y) Find: ypx.to#taPxJxdy IF Fi aEule nowmebtionhebtiaship Pylyl ,ELy)=µy,Jy whenfo ,y)±EEC*D=iex,µx)(y-µD}}ch5h.314 HECXPrk .mx# formal definition lsnathexpoession g) Given: ilinldatio:ph tat iv doesn't x'sdirection y=axtb change Fin: - a=Y oppositeirections µ ,Jy ,wvkiyhpxy # X @cov(x,y)=e{(x-µ×)(y-µy )} axtb - -b) } =E{(*µ×)( aµx @ECy)=µy=aµ×tbf =E{(×-µ×X*µx)a} - aagnnocgrcoktih bOVar4Hj2y-azjx2-aEECxfuxY3-Jy-1afjfeuarisalways-a@a-opositirelsigndependsonat.aTsnowmebtichOpx.gogytxH.gITEsEfEpssFTiteoEuyawmjxt.Yna.EafYtdnttEijafdy-2dxfxY-grxXgjDgfzzcor-dx2y-2xt22x2y-Z2xz-ZJjwstusethisequationdiredlypx.y-lsY-axtb.aDiv-dx2yccovCx.ykdxdypx.y µ -h'4㱺ˠwunYneY¥hnww on +lE6y×s×gDn±H independent tlhvariannormalized byslandardeviation pt correlation tfpxyatl Correlation EGPEO coefficient orthogonal ex) Given : Xi .. ,Xnareiid㱺f× .f×n(X ,xn ) , ; . Efx ,(×fq( xD .. .fxnK) Etfxfx ,)fxfk) .. .fxKn ) Find :P(Xn=ma×(x , ,xnDttnbstRv ,, P(Xn=minlK÷Ynȼ .. , p(Xn=max(x .,xnD ,, ¥ .ae#9oE....IonfoonfxtxDfxkd...fx(Xn-DfxCxn).x.dxz...dxn+dxn =L :( fxonofxlxm ,dxn+ ) . fxonofxlxddxz )( fhoofxlx , )d×)*f×(xn)dxn :( ) . F×lH=gP•f×(u)du=f9oEKn .tn#fxKnldxn=f9fFxcxDmfxCxn)dx.FhYTntt X ddE¥n1=fx(Xn)㱺dy=fxCxn)dxn ×nȾoo xn - too =fymdy=Info=# .am#,a..s=Etotos=*aj Foti ex)Given Ex 4 91) ,y)={2x;0IfIE㱺 h-*ȼy±xz o ;ow . y=x2 y=xz Find : . '× X=ry x±Ff Html a)C= ¥ I 'it i b)fx(x),fy$ # aretheyirdeps.ho.becauseydeplndsonxinlyIExsndcovCx.yKOjHEGsymmety1DfxCxtffx.yCx.yjdyc-fyff-fry2xdx-X2lK-l-fuhenOEyLDIIIxIdjt.a.uxufetstIta2xdxax4ILttiihEHsHtsilwhmtsgtggPwauap.aqxjgooIegfttsEtEt5ooEjEY.EotBttIa.y.a.scECxkfjxtt4x3dx-4foxdx-4sXsfo-41sk9DElyHf9ooyfyly1dyoY-EiylHy1dytfloylty1dyshsx.OtrianglePDFissymmetncaound01covCx.yKFk.y2s-EWECyXo4ts-Ek.y1xtyarenotindependeutbecause4x3CktyHF2xEEgCx.yB-SxfygCx.yHx.yCX.y1dxdy-ffxyCzxdydx-2fjxyj@dx-xE2aydy-yEfxy-tzska5-fx2IB-tzszxa-x93-0-72fox2Bydydx-O-covCx.yfindependenceIsMhlYx.y ) . butcovk indep ,y)=O# ^ As ) (3,5) ex)Giren: was - Pcmaxlxykd 's dawarea =L ,y)={ okgjfjEF of interest yw QW=min{ ×,...n3 =L PK , >w,Xz>w ,..,×n>w) Find: El -PCx,>w)* . .*P(xn>w ) FWW )&fw( w) =L-( tFxCwD* ...*(tF×n(WD Dense P(w>w #lttFxo..*(tFqwD subscriponx's a ' nowthesame P(Xn=Max(× ,...×n))=tn thing Fwlwfl dw fewI#xCwDnH w) )=n(tF×(wDmfx(w)f( Sample exam problems fxytxiy) texypeyjoindependent =( #2) Given: Random variablesX and 'have the PMF know :{ )-1 joint Epxycx,y fxCx7f9oofxylxifdyHDGiven.fylyHf0o0ofx.yCx.ydxRandomvaniablesXandYhavethejointCDFCtexXtett.yxE0oFxyKPszo.o.w.Findip1ugin2d3fo@aHxxe2.Yc3PFjgjyljf3HEktetFx.yCx.y-PCxLX.YfylbsFxcx.tayExsYhoEiiex-EEsoIeFEEEffyYt3tldk9deiF.TtdFylyIFx.y6o.y ,y(x,y7={ 0 ;ow . Pycyhsxpxiykyl )=teh={'€¥g EW=§xPxW a) Whetisthevalueytheconstantc Varlx)=EA2tE4D=f×2 yn 㱺 # , P(×=l)-4/28 EC×Y=EX2PxlD , ••kc Ⱦ IIF¥I⾨*¥#g*¥±a*'*EkstI¥D % P(Y=D -7/28 .- .co.4c Ⱦ 7128 PGH ,y=h=PkeDP(y=D=%s*s5=Yzg 1 , [ 4 >X 9 ) becauseheconditiyxincxy doesn't g pyly whoepegdedependontkconditionofy PxD= - 4128 8%8%28 3+1 -16+2+12+4=28 c)EC×)=§xP×tx) Ely)=§yPyly ) =4*IDH3*¥D =t*Is)+(z*Fsh(*¥D - . 12*758+32*224 d)j×=Fa)=EE4¥a jy ECYY =£ztYf+¥s=gI=D22*8*+42*124 = =¥s+¥s=7¥s=sD 7%8+189/28=196/28--7--21EC3=fa -4 # (1,) o :f #3) Given : Know : >x a . a., FiaTtIWrvarHEKtf0o0oxfxCHdxEtHfyH-fo5jgxyetdxioasezECx7foooxfxIddxVarlD-ECx4-E4D-f90ox2fxcxjdx-E2Wcneedthistirstcdy.l-Ek.ytElDEtDfxlDef9oofx.ylxiydy-folJdYEkytf0oof9ooxyfx.yCx.y1dxdy-tsTCxty1dy-t3CxYtEH2objEhpovarCH-t3l2xtFhyfycp-foxfyfdx-tsfloCxtyHx-tslEtyxHo-2zIt2zEH-foxtEtEsldx-JloxHkxtzDdx-tsftztyl-ItufhsSloxkxtzDdx-13floz@tzddxtHkfoyHetufDdy-st5oyktuDdy-tsKytKDfo.tk.D fx.yk.yt.ES#poeoeEEzfxhD=fFofxilKYYr=*=fxa=gjofxoET ao*e ttso2Ckty4dy-tzlKt7YDto-t3tst3D-t3k3j.tD-43.fIttsfttst3tssftsEHBvarGtEG4-E4xtf00oxzfxWdx.e2gjvarlYkECyY-E4yj-f.Yoy2fylyIdy-E2-EtyYfoy4tutttDdy-f2oHt3tyayEktfox45tHdx-fotEt25Ydx.gyotkty3jdy-t3CEthIlii5foCx3txDdx-5GtEHo-theIIeitoEl-tEtht2seaY-5.ktD-tsf3atH-3tetisteEvarlH-G-tHtEa-t2sTaFT.EvarcxFIs-Ed2-EEstHd6vCx.yHEkyhECxTEKD-5.CEXatjElxykfofoxylxtsIdxdya.sg.zgsg.qHEktYHEKHElD-Fttta-hEDtf2oyflox-yxdxdyeDVarktD-VarkItvarCptzavCxyj-Ezt3tt2tstD-tfoytEtFzIds-EztToa.aa-s@hsfoytst1DdyttzfoCfiEjdy-teEtEDi-tsCICat8D-tsaise.t , 'tneed to know how to that #6 was inthe do 3&4 ,and wrong SolutionSheet distance #4) Given : - Van choc Straw Short 0.2 0.2 0.2 oderf long 0.1 0.2 0.1 Find jointPMFPN ,p( nd) Drsaquibsaidwedon00.41+3004.3=6+40+90 ^ t op 0.2 0.1 Ⱦ 0.4 2- / - 0.2 02 0.2 Ⱦ 0.6 to do too 7 D ok ! ok bas , , D) = b)E( N Pvcn ) = 136 ^ f e) Are Dan independent 0.2 0.1 Ⱦ 0.4 If were,P(N=l)P(D=D should 0.2 o., they equal 2- P(N=DP(D=D - 0.2 oz Ⱦ , oz ,,Pw=D to do , = 00.18=10.2.3) too therefore Ntdaremtindepuobt ok o!q ¥ ppd - , P(D=l ) f)Cost=N*D Know : OR Elgcx ,yD=5§g(}y)p(x=X,y=y ) Usetechn .fm#2!make2matriasddopoint-wisemultipliationtaddthemup " 20100300 .it#o:::::s=OZ(Zo)+O.2(NO)+o.z( ( v zoo) 1 20 100 300 240200600=4+203+0.1400) -160+4+40+60=1880

Step 2 of 3

Chapter 5, Problem 5.82 is Solved
Step 3 of 3

Textbook: Physics for Scientists & Engineers with Modern Physics
Edition: 4
Author: Douglas C. Giancoli
ISBN: 9780131495081

Since the solution to 5.82 from 5 chapter was answered, more than 322 students have viewed the full step-by-step answer. This full solution covers the following key subjects: people, Room, Wall, ride, against. This expansive textbook survival guide covers 44 chapters, and 3904 solutions. This textbook survival guide was created for the textbook: Physics for Scientists & Engineers with Modern Physics, edition: 4. The full step-by-step solution to problem: 5.82 from chapter: 5 was answered by , our top Physics solution expert on 11/10/17, 05:57PM. The answer to “In a Rotor-ride at a carnival, people rotate in a verticalcylindrically walled room. (See Fig. 5-49). If the roomradius was 5.5 m, and the rotation frequency 0.50 revolutionsper second when the floor drops out, whatminimum coefficient of static friction keeps the people fromslipping down? People on this ride said they were pressedagainst the wall. Is there really an outward force pressingthem against the wall? If so, what is its source? If not, whatis the proper description of their situation (besides nausea)?[Hint: Draw a free-body diagram for a person.] FIGURE 5-49 82.” is broken down into a number of easy to follow steps, and 91 words. Physics for Scientists & Engineers with Modern Physics was written by and is associated to the ISBN: 9780131495081.

Other solutions

People also purchased

Related chapters

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

In a Rotor-ride at a carnival, people rotate in a