In a Rotor-ride at a carnival, people rotate in a verticalcylindrically walled room. (See Fig. 5-49). If the roomradius was 5.5 m, and the rotation frequency 0.50 revolutionsper second when the floor drops out, whatminimum coefficient of static friction keeps the people fromslipping down? People on this ride said they were pressedagainst the wall. Is there really an outward force pressingthem against the wall? If so, what is its source? If not, whatis the proper description of their situation (besides nausea)?[Hint: Draw a free-body diagram for a person.] FIGURE 5-49 82.
Midterm Study Guide #3 ' ' 21=1 K.090.09 0 oy ioxgz Rytx y -2 k¥ 21=2 0 0 081 ; ×=0y)y=o y0t 0 =§p×,y#y , 0.01 0.18 edpxtdxefdhffotio 10.110.040.81 Given 0'foo9 21=221=10 O 0.81 0.81 .IEIofdoiY snEo px.ycx.gl P4#={YiliYET pyly 1- Fin: 0.o; y=. ¥¥ ;ow ,EHtEtp =§P#Ky) mPMFinal P qkntpylgh ) -2 k¥ E(D= 0*0.0-11*0.18+2*0 Bx=o y=oy㱺 y 0.01=1 xjtoo0.1/0.0910-81 :# 0.81 0.81 Pyly T Ely)=0*0.1+1*0.-12*0.8Pxytx ,y)y=oyit :0.1/0.0910-81 =1.71=0.09+1.62 y.tk#x:# 0.81 0.81 Pyly T ex Fi(w) ,where W=×y %={ 0,44 } ' ECWKEGY ) Bycx,y)y=o㱺y=z ¥÷s*¥*x . www.theikdWYYE8oBEhEF=o*#I*o.oa+e*o.aw=X+ay 0 ; &W . 0.09+3.24=3.33 fnway±} - it'sless work wayzwMuwȼwethis technique ) evaluatethe functiofereverypossikkxoy , make E{9(×,y)}=§§g(x,yjp(×=x,y=y Matri,tpoihtwisemultiplication ' xl 0 I 2 × 't0 I 2 o 0 * 0 I 0 I 2 10.090.09 - EK ) 0010 2 4 21 00=>01*0081)+(4*0.81) 3.33 - ,y = ELW) Ecxy ) PMF joint onlyfortineas ex)Given : Learned : NEK Px ,y(x,y)=PK=X ,y=y) Find: ypx.to#taPxJxdy IF Fi aEule nowmebtionhebtiaship Pylyl ,ELy)=µy,Jy whenfo ,y)±EEC*D=iex,µx)(y-µD}}ch5h.314 HECXPrk .mx# formal definition lsnathexpoession g) Given: ilinldatio:ph tat iv doesn't x'sdirection y=axtb change Fin: - a=Y oppositeirections µ ,Jy ,wvkiyhpxy # X @cov(x,y)=e{(x-µ×)(y-µy )} axtb - -b) } =E{(*µ×)( aµx @ECy)=µy=aµ×tbf =E{(×-µ×X*µx)a} - aagnnocgrcoktih bOVar4Hj2y-azjx2-aEECxfuxY3-Jy-1afjfeuarisalways-a@a-opositirelsigndependsonat.aTsnowmebtichOpx.gogytxH.gITEsEfEpssFTiteoEuyawmjxt.Yna.EafYtdnttEijafdy-2dxfxY-grxXgjDgfzzcor-dx2y-2xt22x2y-Z2xz-ZJjwstusethisequationdiredlypx.y-lsY-axtb.aDiv-dx2yccovCx.ykdxdypx.y µ -h'4㱺ˠwunYneY¥hnww on +lE6y×s×gDn±H independent tlhvariannormalized byslandardeviation pt correlation tfpxyatl Correlation EGPEO coefficient orthogonal ex) Given : Xi .. ,Xnareiid㱺f× .f×n(X ,xn ) , ; . Efx ,(×fq( xD .. .fxnK) Etfxfx ,)fxfk) .. .fxKn ) Find :P(Xn=ma×(x , ,xnDttnbstRv ,, P(Xn=minlK÷Ynȼ .. , p(Xn=max(x .,xnD ,, ¥ .ae#9oE....IonfoonfxtxDfxkd...fx(Xn-DfxCxn).x.dxz...dxn+dxn =L :( fxonofxlxm ,dxn+ ) . fxonofxlxddxz )( fhoofxlx , )d×)*f×(xn)dxn :( ) . F×lH=gP•f×(u)du=f9oEKn .tn#fxKnldxn=f9fFxcxDmfxCxn)dx.FhYTntt X ddE¥n1=fx(Xn)㱺dy=fxCxn)dxn ×nȾoo xn - too =fymdy=Info=# .am#,a..s=Etotos=*aj Foti ex)Given Ex 4 91) ,y)={2x;0IfIE㱺 h-*ȼy±xz o ;ow . y=x2 y=xz Find : . '× X=ry x±Ff Html a)C= ¥ I 'it i b)fx(x),fy$ # aretheyirdeps.ho.becauseydeplndsonxinlyIExsndcovCx.yKOjHEGsymmety1DfxCxtffx.yCx.yjdyc-fyff-fry2xdx-X2lK-l-fuhenOEyLDIIIxIdjt.a.uxufetstIta2xdxax4ILttiihEHsHtsilwhmtsgtggPwauap.aqxjgooIegfttsEtEt5ooEjEY.EotBttIa.y.a.scECxkfjxtt4x3dx-4foxdx-4sXsfo-41sk9DElyHf9ooyfyly1dyoY-EiylHy1dytfloylty1dyshsx.OtrianglePDFissymmetncaound01covCx.yKFk.y2s-EWECyXo4ts-Ek.y1xtyarenotindependeutbecause4x3CktyHF2xEEgCx.yB-SxfygCx.yHx.yCX.y1dxdy-ffxyCzxdydx-2fjxyj@dx-xE2aydy-yEfxy-tzska5-fx2IB-tzszxa-x93-0-72fox2Bydydx-O-covCx.yfindependenceIsMhlYx.y ) . butcovk indep ,y)=O# ^ As ) (3,5) ex)Giren: was - Pcmaxlxykd 's dawarea =L ,y)={ okgjfjEF of interest yw QW=min{ ×,...n3 =L PK , >w,Xz>w ,..,×n>w) Find: El -PCx,>w)* . .*P(xn>w ) FWW )&fw( w) =L-( tFxCwD* ...*(tF×n(WD Dense P(w>w #lttFxo..*(tFqwD subscriponx's a ' nowthesame P(Xn=Max(× ,...×n))=tn thing Fwlwfl dw fewI#xCwDnH w) )=n(tF×(wDmfx(w)f( Sample exam problems fxytxiy) texypeyjoindependent =( #2) Given: Random variablesX and 'have the PMF know :{ )-1 joint Epxycx,y fxCx7f9oofxylxifdyHDGiven.fylyHf0o0ofx.yCx.ydxRandomvaniablesXandYhavethejointCDFCtexXtett.yxE0oFxyKPszo.o.w.Findip1ugin2d3fo@aHxxe2.Yc3PFjgjyljf3HEktetFx.yCx.y-PCxLX.YfylbsFxcx.tayExsYhoEiiex-EEsoIeFEEEffyYt3tldk9deiF.TtdFylyIFx.y6o.y ,y(x,y7={ 0 ;ow . Pycyhsxpxiykyl )=teh={'€¥g EW=§xPxW a) Whetisthevalueytheconstantc Varlx)=EA2tE4D=f×2 yn 㱺 # , P(×=l)-4/28 EC×Y=EX2PxlD , ••kc Ⱦ IIF¥I⾨*¥#g*¥±a*'*EkstI¥D % P(Y=D -7/28 .- .co.4c Ⱦ 7128 PGH ,y=h=PkeDP(y=D=%s*s5=Yzg 1 , [ 4 >X 9 ) becauseheconditiyxincxy doesn't g pyly whoepegdedependontkconditionofy PxD= - 4128 8%8%28 3+1 -16+2+12+4=28 c)EC×)=§xP×tx) Ely)=§yPyly ) =4*IDH3*¥D =t*Is)+(z*Fsh(*¥D - . 12*758+32*224 d)j×=Fa)=EE4¥a jy ECYY =£ztYf+¥s=gI=D22*8*+42*124 = =¥s+¥s=7¥s=sD 7%8+189/28=196/28--7--21EC3=fa -4 # (1,) o :f #3) Given : Know : >x a . a., FiaTtIWrvarHEKtf0o0oxfxCHdxEtHfyH-fo5jgxyetdxioasezECx7foooxfxIddxVarlD-ECx4-E4D-f90ox2fxcxjdx-E2Wcneedthistirstcdy.l-Ek.ytElDEtDfxlDef9oofx.ylxiydy-folJdYEkytf0oof9ooxyfx.yCx.y1dxdy-tsTCxty1dy-t3CxYtEH2objEhpovarCH-t3l2xtFhyfycp-foxfyfdx-tsfloCxtyHx-tslEtyxHo-2zIt2zEH-foxtEtEsldx-JloxHkxtzDdx-tsftztyl-ItufhsSloxkxtzDdx-13floz@tzddxtHkfoyHetufDdy-st5oyktuDdy-tsKytKDfo.tk.D fx.yk.yt.ES#poeoeEEzfxhD=fFofxilKYYr=*=fxa=gjofxoET ao*e ttso2Ckty4dy-tzlKt7YDto-t3tst3D-t3k3j.tD-43.fIttsfttst3tssftsEHBvarGtEG4-E4xtf00oxzfxWdx.e2gjvarlYkECyY-E4yj-f.Yoy2fylyIdy-E2-EtyYfoy4tutttDdy-f2oHt3tyayEktfox45tHdx-fotEt25Ydx.gyotkty3jdy-t3CEthIlii5foCx3txDdx-5GtEHo-theIIeitoEl-tEtht2seaY-5.ktD-tsf3atH-3tetisteEvarlH-G-tHtEa-t2sTaFT.EvarcxFIs-Ed2-EEstHd6vCx.yHEkyhECxTEKD-5.CEXatjElxykfofoxylxtsIdxdya.sg.zgsg.qHEktYHEKHElD-Fttta-hEDtf2oyflox-yxdxdyeDVarktD-VarkItvarCptzavCxyj-Ezt3tt2tstD-tfoytEtFzIds-EztToa.aa-s@hsfoytst1DdyttzfoCfiEjdy-teEtEDi-tsCICat8D-tsaise.t , 'tneed to know how to that #6 was inthe do 3&4 ,and wrong SolutionSheet distance #4) Given : - Van choc Straw Short 0.2 0.2 0.2 oderf long 0.1 0.2 0.1 Find jointPMFPN ,p( nd) Drsaquibsaidwedon00.41+3004.3=6+40+90 ^ t op 0.2 0.1 Ⱦ 0.4 2- / - 0.2 02 0.2 Ⱦ 0.6 to do too 7 D ok ! ok bas , , D) = b)E( N Pvcn ) = 136 ^ f e) Are Dan independent 0.2 0.1 Ⱦ 0.4 If were,P(N=l)P(D=D should 0.2 o., they equal 2- P(N=DP(D=D - 0.2 oz Ⱦ , oz ,,Pw=D to do , = 00.18=10.2.3) too therefore Ntdaremtindepuobt ok o!q ¥ ppd - , P(D=l ) f)Cost=N*D Know : OR Elgcx ,yD=5§g(}y)p(x=X,y=y ) Usetechn .fm#2!make2matriasddopoint-wisemultipliationtaddthemup " 20100300 .it#o:::::s=OZ(Zo)+O.2(NO)+o.z( ( v zoo) 1 20 100 300 240200600=4+203+0.1400) -160+4+40+60=1880