Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Already have an account? Login here
Reset your password

Solutions for Chapter 11.2: Elementary Statistics 12th Edition

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Full solutions for Elementary Statistics | 12th Edition

ISBN: 9780321836960

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Solutions for Chapter 11.2

Solutions for Chapter 11.2
4 5 0 252 Reviews
Textbook: Elementary Statistics
Edition: 12
Author: Mario F. Triola
ISBN: 9780321836960

This textbook survival guide was created for the textbook: Elementary Statistics, edition: 12. Since 50 problems in chapter 11.2 have been answered, more than 377076 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 11.2 includes 50 full step-by-step solutions. Elementary Statistics was written by and is associated to the ISBN: 9780321836960.

Key Statistics Terms and definitions covered in this textbook
  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • Alias

    In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Alternative hypothesis

    In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

  • Assignable cause

    The portion of the variability in a set of observations that can be traced to speciic causes, such as operators, materials, or equipment. Also called a special cause.

  • Biased estimator

    Unbiased estimator.

  • Binomial random variable

    A discrete random variable that equals the number of successes in a ixed number of Bernoulli trials.

  • Categorical data

    Data consisting of counts or observations that can be classiied into categories. The categories may be descriptive.

  • Coeficient of determination

    See R 2 .

  • Conditional probability

    The probability of an event given that the random experiment produces an outcome in another event.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Consistent estimator

    An estimator that converges in probability to the true value of the estimated parameter as the sample size increases.

  • Cumulative sum control chart (CUSUM)

    A control chart in which the point plotted at time t is the sum of the measured deviations from target for all statistics up to time t

  • Density function

    Another name for a probability density function

  • Eficiency

    A concept in parameter estimation that uses the variances of different estimators; essentially, an estimator is more eficient than another estimator if it has smaller variance. When estimators are biased, the concept requires modiication.

  • Error mean square

    The error sum of squares divided by its number of degrees of freedom.

  • Error variance

    The variance of an error term or component in a model.

  • Event

    A subset of a sample space.

  • Factorial experiment

    A type of experimental design in which every level of one factor is tested in combination with every level of another factor. In general, in a factorial experiment, all possible combinations of factor levels are tested.

  • Fisher’s least signiicant difference (LSD) method

    A series of pair-wise hypothesis tests of treatment means in an experiment to determine which means differ.

  • Gaussian distribution

    Another name for the normal distribution, based on the strong connection of Karl F. Gauss to the normal distribution; often used in physics and electrical engineering applications