×
Get Full Access to Engineering Mechanics: Statics - 14 Edition - Chapter 2 - Problem 2-25
Get Full Access to Engineering Mechanics: Statics - 14 Edition - Chapter 2 - Problem 2-25

×

# Solved: If F1 = 30 lb and F2 = 40 lb, determine the angles

ISBN: 9780133918922 126

## Solution for problem 2-25 Chapter 2

Engineering Mechanics: Statics | 14th Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants

Engineering Mechanics: Statics | 14th Edition

4 5 1 332 Reviews
16
2
Problem 2-25

If F1 = 30 lb and F2 = 40 lb, determine the angles u and f so that the resultant force is directed along the positive x axis and has a magnitude of FR = 60 lb. y x F1 F2 Prob. 225

Step-by-Step Solution:
Step 1 of 3

Midterm Study Guide #3 ' ' 21=1 K.090.09 0 oy ioxgz Rytx y -2 k¥ 21=2 0 0 081 ; ×=0y)y=o y0t 0 =§p×,y#y , 0.01 0.18 edpxtdxefdhffotio 10.110.040.81 Given 0'foo9 21=221=10 O 0.81 0.81 .IEIofdoiY snEo px.ycx.gl P4#={YiliYET pyly 1- Fin: 0.o; y=. ¥¥ ;ow ,EHtEtp =§P#Ky) mPMFinal P qkntpylgh ) -2 k¥ E(D= 0*0.0-11*0.18+2*0 Bx=o y=oy㱺 y 0.01=1 xjtoo0.1/0.0910-81 :# 0.81 0.81 Pyly T Ely)=0*0.1+1*0.-12*0.8Pxytx ,y)y=oyit :0.1/0.0910-81 =1.71=0.09+1.62 y.tk#x:# 0.81 0.81 Pyly T ex Fi(w) ,where W=×y %={ 0,44 } ' ECWKEGY ) Bycx,y)y=o㱺y=z ¥÷s*¥*x . www.theikdWYYE8oBEhEF=o*#I*o.oa+e*o.aw=X+ay 0 ; &W . 0.09+3.24=3.33 fnway±} - it'sless work wayzwMuwȼwethis technique ) evaluatethe functiofereverypossikkxoy , make E{9(×,y)}=§§g(x,yjp(×=x,y=y Matri,tpoihtwisemultiplication ' xl 0 I 2 × 't0 I 2 o 0 * 0 I 0 I 2 10.090.09 - EK ) 0010 2 4 21 00=>01*0081)+(4*0.81) 3.33 - ,y = ELW) Ecxy ) PMF joint onlyfortineas ex)Given : Learned : NEK Px ,y(x,y)=PK=X ,y=y) Find: ypx.to#taPxJxdy IF Fi aEule nowmebtionhebtiaship Pylyl ,ELy)=µy,Jy whenfo ,y)±EEC*D=iex,µx)(y-µD}}ch5h.314 HECXPrk .mx# formal definition lsnathexpoession g) Given: ilinldatio:ph tat iv doesn't x'sdirection y=axtb change Fin: - a=Y oppositeirections µ ,Jy ,wvkiyhpxy # X @cov(x,y)=e{(x-µ×)(y-µy )} axtb - -b) } =E{(*µ×)( aµx @ECy)=µy=aµ×tbf =E{(×-µ×X*µx)a} - aagnnocgrcoktih bOVar4Hj2y-azjx2-aEECxfuxY3-Jy-1afjfeuarisalways-a@a-opositirelsigndependsonat.aTsnowmebtichOpx.gogytxH.gITEsEfEpssFTiteoEuyawmjxt.Yna.EafYtdnttEijafdy-2dxfxY-grxXgjDgfzzcor-dx2y-2xt22x2y-Z2xz-ZJjwstusethisequationdiredlypx.y-lsY-axtb.aDiv-dx2yccovCx.ykdxdypx.y µ -h'4㱺ˠwunYneY¥hnww on +lE6y×s×gDn±H independent tlhvariannormalized byslandardeviation pt correlation tfpxyatl Correlation EGPEO coefficient orthogonal ex) Given : Xi .. ,Xnareiid㱺f× .f×n(X ,xn ) , ; . Efx ,(×fq( xD .. .fxnK) Etfxfx ,)fxfk) .. .fxKn ) Find :P(Xn=ma×(x , ,xnDttnbstRv ,, P(Xn=minlK÷Ynȼ .. , p(Xn=max(x .,xnD ,, ¥ .ae#9oE....IonfoonfxtxDfxkd...fx(Xn-DfxCxn).x.dxz...dxn+dxn =L :( fxonofxlxm ,dxn+ ) . fxonofxlxddxz )( fhoofxlx , )d×)*f×(xn)dxn :( ) . F×lH=gP•f×(u)du=f9oEKn .tn#fxKnldxn=f9fFxcxDmfxCxn)dx.FhYTntt X ddE¥n1=fx(Xn)㱺dy=fxCxn)dxn ×nȾoo xn - too =fymdy=Info=# .am#,a..s=Etotos=*aj Foti ex)Given Ex 4 91) ,y)={2x;0IfIE㱺 h-*ȼy±xz o ;ow . y=x2 y=xz Find : . '× X=ry x±Ff Html a)C= ¥ I 'it i b)fx(x),fy\$ # aretheyirdeps.ho.becauseydeplndsonxinlyIExsndcovCx.yKOjHEGsymmety1DfxCxtffx.yCx.yjdyc-fyff-fry2xdx-X2lK-l-fuhenOEyLDIIIxIdjt.a.uxufetstIta2xdxax4ILttiihEHsHtsilwhmtsgtggPwauap.aqxjgooIegfttsEtEt5ooEjEY.EotBttIa.y.a.scECxkfjxtt4x3dx-4foxdx-4sXsfo-41sk9DElyHf9ooyfyly1dyoY-EiylHy1dytfloylty1dyshsx.OtrianglePDFissymmetncaound01covCx.yKFk.y2s-EWECyXo4ts-Ek.y1xtyarenotindependeutbecause4x3CktyHF2xEEgCx.yB-SxfygCx.yHx.yCX.y1dxdy-ffxyCzxdydx-2fjxyj@dx-xE2aydy-yEfxy-tzska5-fx2IB-tzszxa-x93-0-72fox2Bydydx-O-covCx.yfindependenceIsMhlYx.y ) . butcovk indep ,y)=O# ^ As ) (3,5) ex)Giren: was - Pcmaxlxykd 's dawarea =L ,y)={ okgjfjEF of interest yw QW=min{ ×,...n3 =L PK , >w,Xz>w ,..,×n>w) Find: El -PCx,>w)* . .*P(xn>w ) FWW )&fw( w) =L-( tFxCwD* ...*(tF×n(WD Dense P(w>w #lttFxo..*(tFqwD subscriponx's a ' nowthesame P(Xn=Max(× ,...×n))=tn thing Fwlwfl dw fewI#xCwDnH w) )=n(tF×(wDmfx(w)f( Sample exam problems fxytxiy) texypeyjoindependent =( #2) Given: Random variablesX and 'have the PMF know :{ )-1 joint Epxycx,y fxCx7f9oofxylxifdyHDGiven.fylyHf0o0ofx.yCx.ydxRandomvaniablesXandYhavethejointCDFCtexXtett.yxE0oFxyKPszo.o.w.Findip1ugin2d3fo@aHxxe2.Yc3PFjgjyljf3HEktetFx.yCx.y-PCxLX.YfylbsFxcx.tayExsYhoEiiex-EEsoIeFEEEffyYt3tldk9deiF.TtdFylyIFx.y6o.y ,y(x,y7={ 0 ;ow . Pycyhsxpxiykyl )=teh={'€¥g EW=§xPxW a) Whetisthevalueytheconstantc Varlx)=EA2tE4D=f×2 yn 㱺 # , P(×=l)-4/28 EC×Y=EX2PxlD , ••kc Ⱦ IIF¥I⾨*¥#g*¥±a*'*EkstI¥D % P(Y=D -7/28 .- .co.4c Ⱦ 7128 PGH ,y=h=PkeDP(y=D=%s*s5=Yzg 1 , [ 4 >X 9 ) becauseheconditiyxincxy doesn't g pyly whoepegdedependontkconditionofy PxD= - 4128 8%8%28 3+1 -16+2+12+4=28 c)EC×)=§xP×tx) Ely)=§yPyly ) =4*IDH3*¥D =t*Is)+(z*Fsh(*¥D - . 12*758+32*224 d)j×=Fa)=EE4¥a jy ECYY =£ztYf+¥s=gI=D22*8*+42*124 = =¥s+¥s=7¥s=sD 7%8+189/28=196/28--7--21EC3=fa -4 # (1,) o :f #3) Given : Know : >x a . a., FiaTtIWrvarHEKtf0o0oxfxCHdxEtHfyH-fo5jgxyetdxioasezECx7foooxfxIddxVarlD-ECx4-E4D-f90ox2fxcxjdx-E2Wcneedthistirstcdy.l-Ek.ytElDEtDfxlDef9oofx.ylxiydy-folJdYEkytf0oof9ooxyfx.yCx.y1dxdy-tsTCxty1dy-t3CxYtEH2objEhpovarCH-t3l2xtFhyfycp-foxfyfdx-tsfloCxtyHx-tslEtyxHo-2zIt2zEH-foxtEtEsldx-JloxHkxtzDdx-tsftztyl-ItufhsSloxkxtzDdx-13floz@tzddxtHkfoyHetufDdy-st5oyktuDdy-tsKytKDfo.tk.D fx.yk.yt.ES#poeoeEEzfxhD=fFofxilKYYr=*=fxa=gjofxoET ao*e ttso2Ckty4dy-tzlKt7YDto-t3tst3D-t3k3j.tD-43.fIttsfttst3tssftsEHBvarGtEG4-E4xtf00oxzfxWdx.e2gjvarlYkECyY-E4yj-f.Yoy2fylyIdy-E2-EtyYfoy4tutttDdy-f2oHt3tyayEktfox45tHdx-fotEt25Ydx.gyotkty3jdy-t3CEthIlii5foCx3txDdx-5GtEHo-theIIeitoEl-tEtht2seaY-5.ktD-tsf3atH-3tetisteEvarlH-G-tHtEa-t2sTaFT.EvarcxFIs-Ed2-EEstHd6vCx.yHEkyhECxTEKD-5.CEXatjElxykfofoxylxtsIdxdya.sg.zgsg.qHEktYHEKHElD-Fttta-hEDtf2oyflox-yxdxdyeDVarktD-VarkItvarCptzavCxyj-Ezt3tt2tstD-tfoytEtFzIds-EztToa.aa-s@hsfoytst1DdyttzfoCfiEjdy-teEtEDi-tsCICat8D-tsaise.t , 'tneed to know how to that #6 was inthe do 3&4 ,and wrong SolutionSheet distance #4) Given : - Van choc Straw Short 0.2 0.2 0.2 oderf long 0.1 0.2 0.1 Find jointPMFPN ,p( nd) Drsaquibsaidwedon00.41+3004.3=6+40+90 ^ t op 0.2 0.1 Ⱦ 0.4 2- / - 0.2 02 0.2 Ⱦ 0.6 to do too 7 D ok ! ok bas , , D) = b)E( N Pvcn ) = 136 ^ f e) Are Dan independent 0.2 0.1 Ⱦ 0.4 If were,P(N=l)P(D=D should 0.2 o., they equal 2- P(N=DP(D=D - 0.2 oz Ⱦ , oz ,,Pw=D to do , = 00.18=10.2.3) too therefore Ntdaremtindepuobt ok o!q ¥ ppd - , P(D=l ) f)Cost=N*D Know : OR Elgcx ,yD=5§g(}y)p(x=X,y=y ) Usetechn .fm#2!make2matriasddopoint-wisemultipliationtaddthemup " 20100300 .it#o:::::s=OZ(Zo)+O.2(NO)+o.z( ( v zoo) 1 20 100 300 240200600=4+203+0.1400) -160+4+40+60=1880

Step 2 of 3

Step 3 of 3

#### Related chapters

Unlock Textbook Solution